Skip to main content

The KOSL Scaling, Invariant Measure and PDF of Turbulence

  • Conference paper
Progress in Turbulence V

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 149))

  • 1304 Accesses

Abstract

In 1941 Kolmogorov and Obukhov [9, 12] proposed that there exists a statistical theory of turbulence that should allow the computation of all the statistical quantities that can be computed and measured in turbulent systems. These are quantities such as the moments, the structure functions and the probability density functions (PDFs) of the turbulent velocity field. The Kolmogorov-Obukhov ’41 theory predicted that the structure functions of turbulence, that are the moments of the velocity differences at distances separated by a lag variable l, should scale with the lag variable to a power p/3 for the pth structure function, multiplied by a universal constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barndorff-Nilsen, O.E.: Exponentially decreasing distributions for the logarithm of the particle size. Proc. R. Soc. London A353, 401–419 (1977)

    Google Scholar 

  2. Barndorff-Nilsen, O.E., Blaesild, P., Schmiegel, J.: A parsimonious and universal description of turbulent velocity increments. Eur. Phys. J. B 41, 345–363 (2004)

    Article  Google Scholar 

  3. Bernard, P.S., Wallace, J.M.: Turbulent Flow. John Wiley & Sons, Hoboken (2002)

    MATH  Google Scholar 

  4. Birnir, B.: Turbulence of a unidirectional flow. In: Proceedings of the Conference on Probability, Geometry and Integrable Systems, MSRI, p. 55. MSRI Publications, Cambridge Univ. Press (December 2007), http://repositories.cdlib.org/cnls/

  5. Birnir, B.: The Kolmogorov-Obukhov statistical theory of turbulence. J. Nonlinear Sci. (2013), doi:10.1007/s00332-012-9164-z

    Google Scholar 

  6. Birnir, B.: The Kolmogorov-Obukhov Theory of Turbulence. Springer, New York (2013)

    Book  MATH  Google Scholar 

  7. Dubrulle, B.: Intermittency in fully developed turbulence: in log-Poisson statistics and generalized scale covariance. Phys. Rev. Letters 73(7), 959–962 (1994)

    Article  Google Scholar 

  8. Hopf, E.: Statistical hydrodynamics and functional calculus. J. Rat. Mech. Anal. 1(1), 87–123 (1953)

    MathSciNet  Google Scholar 

  9. Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk SSSR 30, 9–13 (1941)

    Google Scholar 

  10. Kolmogorov, A.N.: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 82–85 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  11. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(3), 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  12. Obukhov, A.M.: On the distribution of energy in the spectrum of turbulent flow. Dokl. Akad. Nauk SSSR 32, 19 (1941)

    Google Scholar 

  13. Obukhov, A.M.: Some specific features of atmospheric turbulence. J. Fluid Mech. 13, 77–81 (1962)

    Article  MathSciNet  Google Scholar 

  14. Reynolds, O.: An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and the the law of resistance in parallel channels. Phil. Trans. Roy. Soc. Lond. 174(11), 935–982 (1883)

    MATH  Google Scholar 

  15. Reynolds, O.: On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil. Trans. Roy. Soc. Lond. 186A, 123–164 (1885)

    Google Scholar 

  16. She, Z.-S., Leveque, E.: Universal scaling laws in fully developed turbulence. Phys. Rev. Letters 72(3), 336–339 (1994)

    Article  Google Scholar 

  17. She, Z.-S., Waymire, E.: Quantized energy cascade and log-poisson statistics in fully developed turbulence. Phys. Rev. Letters 74(2), 262–265 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Birnir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Birnir, B. (2014). The KOSL Scaling, Invariant Measure and PDF of Turbulence. In: Talamelli, A., Oberlack, M., Peinke, J. (eds) Progress in Turbulence V. Springer Proceedings in Physics, vol 149. Springer, Cham. https://doi.org/10.1007/978-3-319-01860-7_5

Download citation

Publish with us

Policies and ethics