Skip to main content
Log in

A New Momentum Equation for Gas Flow in Porous Media: The Klinkenberg Effect Seen Through the Kinetic Theory

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper, an original set of transport equations for gas in porous media is developed. As far as low pressure gases or very fine grained porous media are concerned, molecular effects are likely to promote a dependency of the permeability on the pressure. These phenomena are usually modelled using the Klinkenberg correction to the Darcy’s law. The retained methodology brings a new interpretation of this particular problem. The approach is based on a volume averaging scale-change methodology applied to the Boltzman equation taking into account the presence of walls. It leads to a homogenized kinetic equation describing the problem at the macroscale. A proper closure is then applied following the strategy proposed by Levermore to obtain a hydrodynamic description. The hydrodynamic force applied by the porous structure on the gas exhibits a strong non-linearity with the gas velocity. However, a linearization is proposed, recovering formally the classical Darcy’s law. The validity of the resulting permeability tensor is finally discussed. As its dependency with pressure is concerned, it opens an original interpretation of the nature of the Klinkenberg effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. J. Klinkenberg, The permeability of porous media to liquids and gas. Drilling and Production Practices, American Petroleum Institute, pp. 200–213 (1941).

  2. C. I. Ikoku, Natural Gas Reservoir Engineering (Wiley, New York, 1984).

    Google Scholar 

  3. A. L. Baehr and M. F. Hult, Evaluation of the unsaturated zone air permeability through pneumatic tests. Water Resour. Res. 27(10):2605–2617 (1991).

    Article  ADS  Google Scholar 

  4. P. Persoff and J. B. Hulen, Hydrologic characterization of reservoir metagraywacke from shallow and deep levels of the Geysers vapor-dominated geothermal system, California, USA. Geothermics 30:169–192 (2001).

    Article  Google Scholar 

  5. J. Gross and G. W. Scherer, Dynamic pressurization: Novel method for measuring fluid permeability. J. Non-Crystalline Solids 325:34–47 (2003).

    Article  ADS  Google Scholar 

  6. E. S. Kikkinidesa, K. A. Stoitsasa, V. T. Zaspalisa, and V. N. Burganos, Simulation of structural and permeation properties of multi-layer ceramic membranes. J. Membrane Sci. 243:133–141 (2004).

    Article  Google Scholar 

  7. M. Lion, F. Skoczylas, Z. Lafhaj, and M. Sersar, Experimental study on a mortar. Temperature effects on porosity and permeability. Residual properties or direct measurements under temperature. Cement and Concrete Res. 35(10):1937–1942 (2005).

    Article  Google Scholar 

  8. S. Colin, P. Lalonde, and R. Caen, Validation of a second-order slip flow model in rectangular microchannels. Heat Transfer Eng. 25(3):23–30 (2004).

    Article  Google Scholar 

  9. J. Maurer, P. Tabeling, P. Joseph, and H. Willaime, Second-order slip laws in microchannels for helium and nitrogen. Phys. Fluids 15(9):2613–2621 (2003).

    Article  ADS  Google Scholar 

  10. P. Lalonde, “Etude expérimentale d&écoulements gazeux dans les microsystémes”. PhD Thesis, Institut National des Sciences Appliquées de Toulouse (2001).

  11. S. Colin and L. Baldas, Effet de raréfaction dans les micro-écoulement gazeux. C. R. Physique 5:521–530 (2004).

    Article  ADS  Google Scholar 

  12. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases (University Press, Cambridge, 1952).

    Google Scholar 

  13. R. G. Deissler, An analysis of second-order slip flow and temperature-jump boundary conditions for rarefied gases. Int. J. Heat and Mass Transfer 7:681–694 (1964).

    Article  MATH  Google Scholar 

  14. C. Aubert and S. Colin, High-order boundary conditions for gaseous flows in rectangular microducts. Microscale Thermophys. Eng. 5:41-54 (2001).

    Article  Google Scholar 

  15. C. Mavriplis, J. C. Ahn, and R. Goulard, Heat transfer and flowfields in short microchannels using direct simulation Monte Carlo. J. Thermophys. Heat Transfer 11(4):489–496 (1997).

    Article  Google Scholar 

  16. L. S. Pan, G. R. Liu, and K. Y. Lam, Determination of slip coefficient for rarefied gas flows using direct simulation Monte Carlo. J. Micromech. Microengrg. 9(1):89–96 (1999).

    Article  ADS  Google Scholar 

  17. G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon Press, Oxford, 1998).

    Google Scholar 

  18. S. Stefanov and C. Cercignani, Monte Carlo simulation of a channel flow of a rarefied gas. Eur. J. Mech. B Fluids 13(1):93–114 (1994).

    MathSciNet  MATH  Google Scholar 

  19. M. Cieplak, J. Koplik, and J. R. Bavanar, Molecular dynamics of flows in the Knudsen regime. Physica A 287:153–160 (2000).

    Article  ADS  Google Scholar 

  20. E. Skjetne and J.-L. Auriault, Homogenization of wall-slip gas flow through porous media. Transport Porous Media 36:293–306 (1999).

    Article  MathSciNet  Google Scholar 

  21. A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic Analysis for Periodic Structures (North-Holland, Amsterdam, 1978).

    MATH  Google Scholar 

  22. E. Sanchez-Palencia, Non-Homogenous Media and Vibration Theory (Lecture Notes in Physics 127, Springer, Berlin, 1980).

    Google Scholar 

  23. D. Lasseux, Changement d&échelle pour le modéle d&écoulement glissant en milieux poreux. 6^\rm\acuteeme Journée d&études sur les Milieux Poreux, Toulouse (2003).

  24. S. Whitaker, The Method of Volume Averaging (Kluwer Academic Press, Dordrecht/Boston/London, 1999).

    Google Scholar 

  25. E. A. Mason and A. P. Malinauskas, Gas transport in porous media: The Dusty-gas model (Chemical Engineering Monograph 17, Elsevier, Amsterdam/Oxford/New York, 1983).

    Google Scholar 

  26. L. M. De Socio, N. Ianiro, and L. Marino, A model for the compressible flow through a porous medium. Math. Mod. Meth. Appl. Sci. 11:1273–1283 (2001).

    Article  MATH  Google Scholar 

  27. L. M. De Socio and N. Ianiro, Kinetic approach to the plane poiseuille flow over a Porous Matrix. Transport in Porous Media 61:275–289 (2005).

    Article  MathSciNet  Google Scholar 

  28. C. D. Levermore, Moment closure hierarchies for kinetic theories. J. Statistical Phys. 83(5/6) (1996).

  29. C. Cercignani, Mathematical Methods in Kinetic Theory (Plenum Publishing Corporation, 1990).

  30. F. Sharipov, Application of the Cercignani-Lampis scattering Kernel to the calculations of rarefied gas flows. II. Slip and jump coefficients. Eur. J. Mech., B/Fluids 22:133–143 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  31. H. Grad, On the kinetic theory of rarefied gases. Common. Pure Appl. Math. 2:331–407 (1949).

    MathSciNet  MATH  Google Scholar 

  32. Y.-S. Wu, K. Pruess, and P. Persoff, Gas flow in porous media with Klinkenberg&s effect. Transport Porous Media 32:117–137 (1998).

    Article  Google Scholar 

  33. S. Chen and G. Doolen, Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 320:329 (1998).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Pavan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavan, V., Oxarango, L. A New Momentum Equation for Gas Flow in Porous Media: The Klinkenberg Effect Seen Through the Kinetic Theory. J Stat Phys 126, 355–389 (2007). https://doi.org/10.1007/s10955-006-9110-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9110-2

Keywords

Navigation