Skip to main content
Log in

The Ghirlanda-Guerra Identities

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

If the variance of a Gaussian spin-glass Hamiltonian grows like the volume the model fulfills the Ghirlanda-Guerra identities in terms of the normalized Hamiltonian covariance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1 M. Aizenman and P. Contucci, On the stability of the quenched state in mean field spin glass models. J. Stat. Phys. 92(5/6):765–783 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  2. 2 M. Aizenman, R. Sims and S. L. Starr, Extended variational principle for the Sherrington-Kirkpatrick spin-glass model. Phys. Rev. B 68:214403 (2003).

    Article  ADS  Google Scholar 

  3. 3 A. Bianchi, P. Contucci and A. Knauf, Stochastically stable quenched measures. J. Stat. Phys. 117(5/6):831–844 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  4. 4 A. Bovier, Statistical mechanics of disordered systems. MaPhySto Lecture Notes 10 (2001), Aarhus.

  5. 5 P. Contucci, Toward a classification theorem for stochastically stable measures. Markov Proc. and Rel. Fields. 9(2):167–176 (2002).

    MathSciNet  Google Scholar 

  6. 6 P. Contucci, Replica equivalence in the Edwards-Anderson model. J. Phys. A: Math. Gen. 36:10961–10966 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. 7 P. Contucci and S. Graffi, Monotonicity and thermodynamic limit for short range disordered models. J. Stat. Phys. 115(1/2):581–589 (2004)

    Article  MathSciNet  Google Scholar 

  8. 8 P. Contucci and S. Graffi, Convex replica symmetry breaking from positivity and thermodynamic limit. Int. Jou. Mod. Phys. B 18(4–5):585–591 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. 9 P. Contucci and C. Giardiná, Spin-glass stochastic stability: a rigorous proof. Annales Henri Poincare Poincare 6(5):915–923 (2005)

    Google Scholar 

  10. 10 P. Contucci and C. Giardiná, Factorization Properties in the 3D Edwards-Anderson Model, Phys. Rev. B 72:014456 (2005).

    Google Scholar 

  11. 11 P. Contucci, S. Graffi and S. Isola, Mean field behaviour of spin systems with orthogonal interaction matrix. J. Stat. Phys. 106(5/6):895–914 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. 12 P. Contucci, M. Degli Esposti, C. Giardiná and S. Graffi, Thermodynamical limit for correlated gaussian random energy models. Commun. Math. Phys. 236:55–63 (2003).

    Article  MATH  ADS  Google Scholar 

  13. 13 B. Derrida, Random energy model: limit of a family of disordered system. Phys. Rev. Lett. 45:79 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  14. 14 B. Derrida and E. Gardner, Solution of the generalized random energy model. J. Phys. C 19:2253–2274 (1986)

    Article  ADS  Google Scholar 

  15. 15 S. Edwards and P. W. Anderson, Theory of spin glasses. J. Phys. F 5:965–974 (1975)

    Article  ADS  Google Scholar 

  16. 16 S. Franz, M. Mezard, G. Parisi and L. Peliti, Measuring equilibrium properties in aging systems. Phys. Rev. Lett. 81:1758 (1998).

    Article  ADS  Google Scholar 

  17. 17 S. Franz, M. Mezard, G. Parisi and L. Peliti, The response of glassy systems to random perturbations: A bridge between equilibrium and off-equilibrium. J. Stat. Phys. 97(3/4):459–488 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  18. 18 F. Guerra, Broken replica symmetry bounds in the mean field spin glass model. Comm. Math. Phys. 233:1–12 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. 19 F. Guerra, About the overlap distribution in a mean field spin glass model. Int. J. Phys. B 10:1675–1684 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  20. 20 S. Ghirlanda and F. Guerra, General properties of overlap probability distributions in disordered spin systems. Towards Parisi ultrametricity. J. Phys. A: Math. Gen. 31:9149–9155 (1998).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. 21 F. Guerra and F. L. Toninelli, The thermodynamic limit in mean field spin glass models. Comm. Math. Phys. 230:71–79 (2002).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. 22 K. M Khanin and Ya. G. Sinai, Existence of free energy for models with long-range random Hamiltonians. J. Stat. Phys. 20:573–584 (1979)

    Article  MathSciNet  Google Scholar 

  23. 23 M. Mezard, G. Parisi and M. A. Virasoro Spin Glass theory and beyond (World Scientific, Singapore 1987).

    MATH  Google Scholar 

  24. 24 E. Marinari, G. Parisi, F. Ricci-Tersenghi, J. Ruiz-Lorenzo and F. Zuliani. Jour. Stat. Phys. 98 973 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  25. C. M. Newman and D. L. Stein, Local vs. global variables for spin glasses, cond-mat\0503344.

  26. 26 E. Orlandini, M. C. Tesi and S. G. Whittington, Self averaging in the statistical mechanics of some lattice models. J. Phys. A: Math. Gen. 35:1–9 (2002).

    MathSciNet  Google Scholar 

  27. 27 G. Parisi, On the probabilistic formulation of the replica approach to spin glasses. Int. J. Mod. Phys. B 18:733–744 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. 28 L. A. Pastur and M. V. Scherbina, Absence of self-averaging of the order parameter in the Sherrington-Kirkpatrick model. J. Stat. Phys. 62(1/2):1–19 (1991).

    Article  Google Scholar 

  29. 29 D. Ruelle, Statistical Mechanics, Rigorous Results (W. A. Benjamin, New York 1969).

    MATH  Google Scholar 

  30. 30 M. Scherbina, On the replica symmetric solution for the Sherrington-Kirkpatrick model Helv. Phys. Acta 70:838–853 (1997).

    MathSciNet  Google Scholar 

  31. 31 D. Sherrington and S. Kirkpatrick, Solvable model of a spin-glass. Phys. Rev. Lett. 35:1792–1796 (1975).

    Article  ADS  Google Scholar 

  32. 32 M. Talagrand, The Parisi formula, Ann. Math. (2005), to appear.

  33. 33 M. Talagrand, Spin glasses: a challenge for mathematicians (Berlin, Springer, 2003).

    Google Scholar 

  34. 34 J. Wehr and M. Aizenman, Fluctuations of extensive functions of quenched random couplings J. Stat. Phys. 60(3/4):287–305 (1990).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierluigi Contucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Contucci, P., Giardinà, C. The Ghirlanda-Guerra Identities. J Stat Phys 126, 917–931 (2007). https://doi.org/10.1007/s10955-006-9091-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9091-1

Keywords

Navigation