Skip to main content
Log in

Critical Dynamics in Thin Films

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Critical dynamics in film geometry is analyzed within the field-theoretical approach. In particular we consider the case of purely relaxational dynamics (Model A) and Dirichlet boundary conditions, corresponding to the so-called ordinary surface universality class on both confining boundaries. The general scaling properties for the linear response and correlation functions and for dynamic Casimir forces are discussed. Within the Gaussian approximation we determine the analytic expressions for the associated universal scaling functions and study quantitatively in detail their qualitative features as well as their various limiting behaviors close to the bulk critical point. In addition we consider the effects of time-dependent fields on the fluctuation-induced dynamic Casimir force and determine analytically the corresponding universal scaling functions and their asymptotic behaviors for two specific instances of instantaneous perturbations. The universal aspects of nonlinear relaxation from an initially ordered state are also discussed emphasizing the different crossovers occurring during this evolution. The model considered is relevant to the critical dynamics of actual uniaxial ferromagnetic films with symmetry-preserving conditions at the confining surfaces and for Monte Carlo simulations of spin system with Glauber dynamics and free boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.Zinn-Justin, Quantum Field Theory and Critical Phenomena, 3rd ed. (Clarendon, Oxford, 1996).

    MATH  Google Scholar 

  2. P.C.Hohenberg and B.I.Halperin, Theory of dynamic critical phenomena. Rev. Mod. Phys. 49:435 (1977).

    Article  ADS  Google Scholar 

  3. A. Pelissetto and E. Vicari, Critical phenomena and renormalization-group theory. Phys. Rep. 368:549 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. R. Folk and G. Moser, Critical dynamics in two loop order. Acta Phys. Slov. 52:285 (2002).

    Google Scholar 

  5. K. Binder, Critical Behaviour at Surfaces, in Phase Transition and Critical Phenomena. Edited by C. Domb and J. L. Lebowitz (Academic, London, 1983), Vol. 8, p. 2.

    Google Scholar 

  6. H. W. Diehl, Field-theoretical approach to critical behaviour at surfaces, in Phase Transition and Critical Phenomena. Edited by C. Domb and J. L. Lebowitz (Academic, London, 1986), Vol. 10, p. 75.

    Google Scholar 

  7. M. Pleimling, Critical phenomena at perfect and non-perfect surfaces. J. Phys. A: Math. Gen. 37:R79 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. S. Dietrich and H. W. Diehl, The effects of surfaces on dynamic critical behavior. Z. Phys. B 51:343 (1983).

    Article  ADS  Google Scholar 

  9. H. W. Diehl and H. K. Janssen, Boundary conditions for the field theory of dynamic critical behavior in semi-infinite systems with conserved order parameter. Phys. Rev. A 45:7145 (1992); H. W. Diehl, Universality classes for the dynamic surface critical behavior of systems with relaxational dynamics. Phys. Rev. B 49:2846 (1994); F. Wichmann and H. W. Diehl, Dynamic surface critical behavior of systems with conserved bulk order parameter: detailed RG analysis of the semi-infinite extensions of model B with and without nonconservative surface terms. Z. Phys. B 97:251 (1995).

    Article  ADS  Google Scholar 

  10. M. N. Barber, Finite-size Scaling, in Phase Transition and Critical Phenomena. Edited by C. Domb and J. L. Lebowitz (Academic, London, 1983), Vol. 8, p. 145.

    Google Scholar 

  11. Finite-size Scaling, Edited by J. L. Cardy (North-Holland, Amsterdam, 1988).

  12. J. G. Brankov, D. M. Dantchev and N. S. Tonchev, The Theory of Critical Phenomena in Finite-Size Systems—Scaling and Quantum Effects (World Scientific, Singapore, 2000).

    Google Scholar 

  13. M. Krech and S. Dietrich, Free energy and specific heat of critical films and surfaces. Phys. Rev. A 46:1886 (1992).

    Article  ADS  Google Scholar 

  14. M. Krech and S. Dietrich, The specific heat of critical films, the Casimir force, and wetting films near critical end points. Phys. Rev. A 46:1922 (1992).

    Article  ADS  Google Scholar 

  15. M. Krech, The Casimir Effect in Critical Systems (World Scientific, Singapore, 1994).

    Google Scholar 

  16. F. Schlesener, A. Hanke and S. Dietrich, Critical Casimir forces in colloidal suspensions. J. Stat. Phys. 110:981 (2003).

    Article  MATH  Google Scholar 

  17. R. Klimpel and S. Dietrich, Structure factor of thin films near continous phase transitions Phys. Rev. B 60:16977 (1999).

    Article  ADS  Google Scholar 

  18. V. Dohm, The superfluid transition in confined 4He: Renormalization-group theory. Phys. Scripta T 49:46 (1993).

    Article  ADS  Google Scholar 

  19. A. Onuki, Phase transition dynamics (Cambridge University Press, Cambridge, 2002).

    MATH  Google Scholar 

  20. S. Puri, Surface-directed spinodal decomposition. J. Phys.: Condens. Matter 17:R101 (2005).

    Article  ADS  Google Scholar 

  21. S. K. Das, S. Puri, J. Horbach and K. Binder, Kinetics of phase separation in thin films: Simulations for the diffusive case. e-print Phys. Rev. E 72, 061603 (2005).

  22. Y. Y. Goldschmidt, Finite size scaling effects in dynamics, Nucl. Phys. B 280 [FS18], 340 (1987); reprinted in Ref. 11

    Article  ADS  MathSciNet  Google Scholar 

  23. J. C. Niel and J. Zinn-Justin, Finite size effects in critical dynamics. Nucl. Phys. B 280 [FS18], 355 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  24. J. C. Niel, Critical dynamics, finite-size effects and supersymmetry. Phys. Rev. B 37:2156 (1988).

    Article  ADS  Google Scholar 

  25. H. W. Diehl, Finite size effects in critical dynamics and the renormalization group. Z. Phys. B 66:211 (1987).

    Article  ADS  Google Scholar 

  26. W. Koch, V. Dohm and D. Stauffer, Order-parameter relaxation times of finite three-dimensional Ising-like systems. Phys. Rev. Lett. 77:1789 (1996).

    Article  ADS  Google Scholar 

  27. K. Oerding, Relaxation times in a finite Ising system with random impurities. J. Stat. Phys. 78:893 (1995).

    Article  ADS  MATH  Google Scholar 

  28. U. Ritschel and H. W. Diehl, Long-time traces of the initial condition in relaxation phenomena near criticality. Phys. Rev. E 51:5392 (1995); Dynamic relaxation and universal short-time behavior in finite systems: The renormalization-group approach. Nucl. Phys. B 464:512 (1996).

    Article  ADS  Google Scholar 

  29. H. W. Diehl and U. Ritschel, Dynamical relaxation and universal short-time behavior of finite systems, J. Stat. Phys. 73:1 (1993).

    Article  ADS  MATH  Google Scholar 

  30. W. Koch and V. Dohm, Finite-size effects on critical diffusion and relaxation towards metastable equilibrium. Phys. Rev. E 58:R1179 (1998).

    Article  ADS  Google Scholar 

  31. M. Krech and D. P. Landau, Spin-dynamics simulations of the three-dimensional XY model: structure factor and transport properties. Phys. Rev. B 60:3375 (1999).

    Article  ADS  Google Scholar 

  32. Z. -B. Li, U. Ritschel and B. Zheng, Monte Carlo simulation of universal short-time behavior in critical relaxation. J. Phys. A: Math. Gen. 27:L837 (1994).

    Article  ADS  MATH  Google Scholar 

  33. K. Nho and E. Manousakis, Scaling of thermal conductivity of helium confined in pores. Phys. Rev. B 64:144513 (2001).

    Article  ADS  Google Scholar 

  34. A. M. Kahn and G. Ahlers, Thermal conductivity of 4He near the superfluid transition in a restricted geometry. Phys. Rev. Lett. 74:944 (1995); D. Murphy, E. Genio, G. Ahlers, F. Liu and Y. Liu, Finite-size scaling and universality of the thermal resistivity of liquid 4He near Tλ, Phys. Rev. Lett. 90:025301 (2003).

    Article  ADS  Google Scholar 

  35. V. Dohm, Renormalization-group flow equations of model F. Phys. Rev. B 44:2697 (1991).

    Article  ADS  Google Scholar 

  36. M. Töpler and V. Dohm, Finite-size effects on the thermal conductivity of 4He near Tλ. Physica B 329–333:200 (2003).

    Article  Google Scholar 

  37. D. Frank and V. Dohm, Critical thermal boundary resistance of 4He near Tλ. Phys. Rev. Lett. 62:1864 (1989); Critical thermal resistance of confined 4He above Tλ. Physica B 165 & 166:543 (1990); Critical thermal boundary resistance of 4He above and below Tλ: renormalization-group theory. Z. Phys. B 84:443 (1991); V. Dohm and R. Haussmann, The superfluid transition of 4He in the presence of a heat current: renormalization-group theory. Physica B 197:215 (1994).

    Article  ADS  Google Scholar 

  38. K. Kuehn, S. Mehta, H. Fu, E. Genio, D. Murphy, F. Liu, Y. Liu and G. Ahlers, Singularity in the thermal boundary resistance between superfluid 4He and a solid surface. Phys. Rev. Lett. 88:095702 (2002).

    Article  ADS  Google Scholar 

  39. J. K. Bhattacharjee, Critical diffusivity in restricted geometry: Decoupled mode approximation. Phys. Rev. Lett. 77:1524 (1996).

    Article  ADS  Google Scholar 

  40. R. A. Ferrell, Decoupled-mode dynamical scaling theory of the binary-liquid phase transition. Phys. Rev. Lett. 24:1169 (1970).

    Article  ADS  Google Scholar 

  41. M. Calvo and R. A. Ferrell, Critical diffusion in a bounded fluid. I, Phys. Rev. A 31:2570 (1985); M. Calvo, Critical diffusion in a bounded fluid. II. Temperature-dependent effects. Phys. Rev. A 31:2588 (1985).

    Article  ADS  Google Scholar 

  42. S. Battacharyya and J. K. Bhattacharjee, Critical ultrasonics near the superfluid transition: finite-size effects. J. Phys. A: Math. Gen. 31:L575 (1998); Superfluid transition in a finite geometry: Critical ultrasonics. Phys. Rev. B 58:15146 (1998).

    Article  ADS  Google Scholar 

  43. D. Bartolo, A. Ajdari and J.-B. Fournier, Effective interactions between inclusions in complex fluids driven out of equilibrium. Phys. Rev. E 67:061112 (2003).

    Article  ADS  Google Scholar 

  44. A. Najafi and R. Golestanian, Forces induced by non-equilibrium fluctuations: The Soret-Casimir effect. e-print cond-mat/0308373v1 (2003). Part of this work has been published in Europhys. Lett. 68:776 (2004).

    Google Scholar 

  45. E. Frey and F. Schwabl, Critical dynamics of magnets. Adv. Phys. 43:577 (1994).

    Article  ADS  Google Scholar 

  46. H. Nakanishi and M. E. Fisher, Critical point shifts in films. J. Chem. Phys. 78:3279 (1983).

    Article  ADS  Google Scholar 

  47. Y. Rouault, J. Baschnagel and K. Binder, Phase separation of symmetrical polymer mixtures in thin-film geometry. J. Stat. Phys. 80:1009 (1995).

    Article  ADS  MATH  Google Scholar 

  48. D. O’Connor and C. R. Stephens, Renormalization group theory of crossovers. Phys. Rep. 363:425 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. P. Calabrese, V. Martin-Mayor, A. Pelissetto and E. Vicari, Dynamic structure factor of the three-dimensional Ising model with purely relaxational dynamics. Phys. Rev. E 68:016110 (2003).

    Article  ADS  Google Scholar 

  50. V. Privman, P. C. Hohenberg and A. Aharony, Universal critical-point amplitude ratios, in Phase Transition and Critical Phenomena. Edited by C. Domb and J. L. Lebowitz (Academic, New York, 1991), Vol. 14, p. 1.

    Google Scholar 

  51. H. K. Janssen, Lagrangean for classic field dynamics and renormalization group calculations of dynamical critical properties. Z. Phys. B 23:377 (1976); R. Bausch, H. K. Janssen and H. Wagner, Renormalized field-theory of critical dynamics. Z. Phys. B 24:113 (1976).

    Article  ADS  Google Scholar 

  52. F. Langouche, D. Roekaerts and E. Tirapegui, Functional integral methods for stochastic fields. Physica A 95:252 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  53. M. Krech, E. Eisenriegler and S. Dietrich, Energy density profiles in critical films. Phys. Rev. E 52:1345 (1995).

    Article  ADS  Google Scholar 

  54. G. Gompper and H. Wagner, Conformal invariance in semi-infinite systems: application to critical surface scattering. Z. Phys. B 59:193 (1985).

    Article  ADS  Google Scholar 

  55. S. Dietrich, Static and dynamic critical phenomena at surfaces, in Magnetic Properties of Low-Dimensional Systems II, Edited by L. M. Falicov, F. Mejía-Lira, and J. L. Morán-López (Springer, Berlin, 1990), p. 150.

    Google Scholar 

  56. D. Dantchev and M. Krech, Critical Casimir force and its fluctuations in lattice spin models: Exact and Monte Carlo results. Phys. Rev. E 69:046119 (2004).

    Article  ADS  Google Scholar 

  57. D. Bartolo, A. Ajdari, J.-B. Fournier and R. Golestanian, Fluctuations of fluctuation-induced Casimir-like forces. Phys. Rev. Lett. 89:230601 (2002).

    Article  ADS  Google Scholar 

  58. M. J. Dunlavy and D. Venus, Critical slowing down in the two-dimensional Ising model measured using ferromagnetic ultrathin films. Phys. Rev. B 71:144406 (2005).

    Article  ADS  Google Scholar 

  59. S. Dietrich and A. Haase, Scattering of X-rays and neutrons at interfaces. Phys. Rep. 260:1 (1995).

    Article  Google Scholar 

  60. R. Bausch and H. K. Janssen, Equation of motion and nonlinear response near the critical point. Z. Phys. B 25:275 (1976).

    Article  ADS  Google Scholar 

  61. R. Bausch, E. Eisenriegler and H. K. Janssen, Nonlinear critical slowing down of the one-component Ginzburg-Landau field. Z. Phys. B 36:179 (1979).

    Article  ADS  Google Scholar 

  62. Z. Rácz, Nonlinear relaxation near the critical point: molecular-field and scaling theory. Phys. Rev. B 13:263 (1976).

    Article  ADS  Google Scholar 

  63. M. E. Fisher and Z. Rácz, Scaling theory of nonlinear critical relaxation. Phys. Rev. B 13:5039 (1976).

    Article  ADS  Google Scholar 

  64. H. Riecke, Nichtlineare Relaxation in halbunendlichen Systemen, diploma thesis, Ludwig-Maximilians-Universität, München (1982).

  65. M. Kikuchi and Y. Okabe, Monte Carlo Study of Critical Relaxation near a Surface. Phys. Rev. Lett. 55:1220 (1985).

    Article  ADS  Google Scholar 

  66. H. Riecke, S. Dietrich and H. Wagner, Field theory for nonlinear critical relaxation near a surface. Phys. Rev. Lett. 55:3010 (1985).

    Article  ADS  Google Scholar 

  67. M. E. Fisher and H. Nakanishi, Scaling theory for the criticality of fluids between plates. J. Chem. Phys. 75:5857 (1981).

    Article  ADS  Google Scholar 

  68. H. Nakanishi and M. E. Fisher, Critical point shifts in films, J. Chem. Phys. 78:3279 (1983).

    Article  ADS  Google Scholar 

  69. M. Krech, Casimir forces in binary liquid mixtures. Phys. Rev. E 56:1642 (1997).

    Article  ADS  Google Scholar 

  70. A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series, Vol. 1: Elementary Functions (Gordon and Breach, New York, 1986).

    MATH  Google Scholar 

  71. Handbook of Mathematical Functions, Edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1970).

  72. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, London, 1965).

    Google Scholar 

  73. M. I. Kaganov and A. N. Omel’yanchuk, Phenomenological theory of phase transition in a thin ferromagnetic plate. Sov. Phys. JETP 34:895 (1972); Zh. Eksp. Teor. Fiz. 61, 1679 (1971).

    ADS  Google Scholar 

  74. M. I. Kaganov, Surface magnetism. Sov. Phys. JETP 35:631 (1972); Zh. Eksp. Teor. Fiz. 62, 1196 (1972).

    ADS  Google Scholar 

  75. P. F. Byrd and M. D. Friedman. Handbook of Elliptic Integrals for Engineers and Scientist (Springer, Berlin, 1971).

    Google Scholar 

  76. P. Kumar, Magnetic phase transition at a surface: mean-field theory. Phys. Rev. B 10:2928 (1974).

    Article  ADS  Google Scholar 

  77. T. C. Lubensky and M. H. Rubin, Critical phenomena in semi-infinite systems II: mean-field theory. Phys. Rev. B 12:3885 (1975).

    Article  ADS  Google Scholar 

  78. H. K. Janssen, B. Schaub and B. Schmittmann, New universal short-time scaling behaviour of critical relaxation processes. Z. Phys B 73:539 (1989); H. K. Janssen, On the renormalized field theory of nonlinear critical relaxation, in From Phase Transitions to Chaos—Topics in Modern Statistical Physics. Edited by G. Györgyi, I. Kondor, L. Sasvári and T. Tel (World Scientific, Singapore, 1992).

    Article  ADS  Google Scholar 

  79. U. Ritschel and P. Czerner, Universal short-time behavior in critical dynamics near surfaces, Phys. Rev. Lett. 75:3882 (1995); S. N. Majumdar and A. M. Sengupta, Nonequilibrium dynamics following a quench to the critical point in a semi-infinite system. Phys. Rev. Lett. 76:2394 (1996); M. Pleimling and F. Iglói, Nonequilibrium critical dynamics at surfaces: cluster dissolution and nonalgebraic correlations. Phys. Rev. Lett. 92:145701 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gambassi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gambassi, A., Dietrich, S. Critical Dynamics in Thin Films. J Stat Phys 123, 929–1005 (2006). https://doi.org/10.1007/s10955-006-9089-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9089-8

Keywords

Navigation