Skip to main content
Log in

Finite size effects in critical dynamics and the renormalization group

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

Systems representable as a time-dependent Ginzburg-Landau model with nonconserved order parameter are considered in a block (V=L d) geometry with periodic boundary conditions, both for space dimensionalitiesd≧4 andd=4−ε. A systematic approach for studying finite size effects on dynamic critical behavior is developed. The method consists in constructing an effective reduced dynamics for the lowest-energy (q=0) mode by integrating out the remaining degrees of freedom, and generalizes recent analytic approaches for studying static finite size effects to dynamics. Above four dimensions, the coupling to the other (q≠0) modes is irrelevant and the probability densityP(Φ,t) for the normalized order parameterΦ=∫dd xϕ(x,t)/V satisfies a Fokker-Planck equation. The dynamics is equivalently described by the Langevin equation for a particle moving in a |Φ|4 potential or by a supersymmetric quantum mechanical Hamiltonian. Dynamic finite size scaling is found to be broken, e.g. the order parameter relaxation rate varies at the bulk critical temperatureT c,∞ as ωυ(T c,∞ L)∼L −d/2 asL→∞. By contrast, ford<4, the coupling to the other (q≠0) modes cannot be ignored and dynamic finite size scaling is valid. The asymptotic behavior of correlation and response functions can be studied within the framework of an expansion in powers of ɛ1/2. The scaling function associated with ωυ is computed to one-loop order. Finally, the many component (n→∞) limit is briefly considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fisher, M.E.: In: Critical Phenomena. Proceedings of the 1970 Enrico Fermi Summer School, Course 51. Green, M.S. (ed.). New York: Academic Press 1972

    Google Scholar 

  2. Barber, M.N.: In: Phase transitions and critical phenomena. Domb, C., Lebowitz, J.L. (eds.), Vol.8. New York: Academic Press 1983

    Google Scholar 

  3. Binder, K. (ed.): In: Topics in Current Physics. Vol. 7: Monte Carlo methods in statistical physics. Berlin, Heidelberg, New York: Springer 1979 and 1986

    Google Scholar 

  4. Brézin, E., Zinn-Justin, J.: Nucl. Phys. B257 [FS 14], 867 (1985)

    Google Scholar 

  5. Rudnick, J., Guo, H., Jasnow, D.: J. Stat. Phys.41, 353 (1985)

    Google Scholar 

  6. Eisenriegler, E., Tomaschitz, R.: (to be published)

  7. Halperin, B.I., Hohenberg, P.C., Ma, S.: Phys. Rev. Lett.29, 1548 (1972); Phys. Rev. B10, 139 (1974)

    Google Scholar 

  8. Eisenriegler, E.: Z. Phys. B-Condensed Matter61, 299 (1985)

    Google Scholar 

  9. Diehl, H.W.: In: Phase transitions and critical phenomena. Domb, C., Lebowitz, J.L. (eds.), Vol. 10. New York: Academic Press 1986

    Google Scholar 

  10. Privman, V., Fisher, M.E.: J. Stat. Phys.33, 385 (1983)

    Google Scholar 

  11. Brézin, E.: J. Phys. (Paris)43, 15 (1982)

    Google Scholar 

  12. Janssen, H.K.: Z. Phys. B-Condensed Matter and Quanta23, 377 (1976)

    Google Scholar 

  13. Langouche, F., Roekaerts, D., Tirapegui, E.: Physica95A, 252 (1979)

    Google Scholar 

  14. Symanzik, K.: Nucl. Phys. B190 [FS3], 1 (1981)

    Google Scholar 

  15. Dietrich, S., Diehl, H.W.: Z. Phys. B-Condensed Matter51, 343 (1983)

    Google Scholar 

  16. Suzuki, N.: Progr. Theor. Phys.58, 1142 (1977)

    Google Scholar 

  17. Fisher, M.E., Racz, Z.: Phys. Rev. B13, 5039 (1976)

    Google Scholar 

  18. Bausch, R., Janssen, H.K.: Z. Phys. B-Condensed Matter and Quanta25, 275 (1976)

    Google Scholar 

  19. Sancho, J.M., San Miguel, M., Gunton, J.D.: J. Phys. A13, L443 (1980)

    Google Scholar 

  20. Bausch, R., Janssen, H.K., Wagner, H.: Z. Phys. B-Condensed Matter and Quanta24, 113 (1976)

    Google Scholar 

  21. see e.g. Risken, H.: In: The Fokker-Planck equation. Methods of solution and applications. Berlin, Heidelberg, New York, Tokyo: Springer 1984

    Google Scholar 

  22. Bernstein, M., Brown, L.S.: Phys. Rev. Lett.52, 1933 (1984)

    Google Scholar 

  23. Witten, E.: Nucl. Phys. B185, 513 (1981)

    Google Scholar 

  24. Bender, C.M., Cooper, F., Freedman, B.: Nucl. Phys. B219, 61 (1983)

    Google Scholar 

  25. Dekker, H., van Kampen, N.G.: Phys. Lett.73A, 374 (1979)

    Google Scholar 

  26. Goldschmidt, Y.: (to appear)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diehl, H.W. Finite size effects in critical dynamics and the renormalization group. Z. Physik B - Condensed Matter 66, 211–218 (1987). https://doi.org/10.1007/BF01311657

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01311657

Keywords

Navigation