Skip to main content
Log in

The Scaling Limit Geometry of Near-Critical 2D Percolation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We analyze the geometry of scaling limits of near-critical 2D percolation, i.e., for p = p c+λδ1/ν, with ν = 4/3, as the lattice spacing δ → 0. Our proposed framework extends previous analyses for p = p c, based on SLE 6. It combines the continuum nonsimple loop process describing the full scaling limit at criticality with a Poissonian process for marking double (touching) points of that (critical) loop process. The double points are exactly the continuum limits of “macroscopically pivotal” lattice sites and the marked ones are those that actually change state as λ varies. This structure is rich enough to yield a one-parameter family of near-critical loop processes and their associated connectivity probabilities as well as related processes describing, e.g., the scaling limit of 2D minimal spanning trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aizenman, The geometry of critical percolation and conformal invariance, in H. Bai-lin, (Ed.) STATPHYS 19, Proceeding Xiamen 1995, World Scientific (1995).

  2. M. Aizenman, Scaling limit for the incipient spanning clusters, in K. Golden, G. Grimmett, R. James, G. Milton and P. Sen, (Eds.) Mathematics of Multiscale Materials; the IMA Volumes in Mathematics and its Applications, (Springer 1998).

  3. M. Aizenman and A. Burchard, Hölder regularity and dimension bounds for random curves, Duke Math. J. 99:419–453 (1999).

    Article  MathSciNet  Google Scholar 

  4. M. Aizenman, A. Burchard, C. M. Newman, and D. Wilson, Scaling Limits for Minimal and Random Spanning Trees in Two Dimensions, Random Struct. Alg. 15:319–367 (1999).

    Article  MathSciNet  Google Scholar 

  5. K. S. Alexander, Percolation and Minimal Spanning Forests in Infinite Graphs, Ann. Probab. 23:87–104 (1995).

    MathSciNet  Google Scholar 

  6. C. Borgs, J. Chayes, H. Kesten, and J. Spencer, The Birth of the Infinite Cluster: Finite-Size Scaling in Percolation, Comm. Math. Phys. 224:153–204 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  7. F. Camia, L. R. G. Fontes, and C. M. Newman, Two-Dimensional Scaling Limits via Marked Nonsimple Loops, in preparation.

  8. F. Camia and C. M. Newman, Continuum Nonsimple Loops and 2D Critical Percolation, J. Stat. Phys. 116:157–173 (2004).

    Article  MathSciNet  Google Scholar 

  9. F. Camia and C. M. Newman, The Full Scaling Limit of Two-Dimensional Critical Percolation, preprint math.PR/0504036 (2005).

  10. J. L. Cardy, Critical percolation in finite geometries, J. Phys. A 25:L201–L206 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  11. J. T. Chayes, L. Chayes, and C. M. Newman, The Stochastic Geometry of Invasion Percolation, Comm. Math. Phys. 101:383–407 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  12. G. R. Grimmett, Percolation, Second edition, (Springer, Berlin 1999).

    MATH  Google Scholar 

  13. L. R. G. Fontes, M. Isopi, C. M. Newman, and K. Ravishankar, Coarsening, Nucleation, and the Marked Brownian Web, Ann. Inst. H. Poincaré (B), Prob. and Stat., to appear, preprint math.PR/0404505 (2004).

  14. C. M. Newman and D. L. Stein, Ground State Structure in a Highly Disordered Spin Glass Model, J. Stat. Phys. 82:1113–1132 (1996).

    Article  MathSciNet  Google Scholar 

  15. S. Rohde and O. Schramm, Basic properties of SLE, Ann. Math., to appear, preprint math.PR/0106036 (revised 2004).

  16. S. Smirnov, Critical percolation in the plane: Conformal invariance, Cardy's formula, scaling limits, C. R. Acad. Sci. Paris 333:239–244 (2001).

    Google Scholar 

  17. O. Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. 118:221–288 (2000).

    MathSciNet  Google Scholar 

  18. O. Schramm and S. Sheffield, in preparation.

  19. S. Sheffield and W. Werner, in preparation.

  20. D. Stauffer, Scaling Theory of Percolation Clusters, Physics Reports 54:1–74 (1979).

    Article  ADS  Google Scholar 

  21. W. Werner, SLEs as boundaries of clusters of Brownian loops, C. R. Math. Acad. Sci. Paris 337:481–486 (2003).

    MathSciNet  Google Scholar 

  22. O. Häggström and Y. Peres, J. Steif, Dynmical Percolation, Ann. Inst. H. Poincar'e, Prob. et Stat. 33:497–528 (1997).

    Article  Google Scholar 

  23. Y. Peres and J. Steif, The Number of Infinite Clusters in Dynamical Percolation, Probab. Theory Related Fields 111:141–165 (1998).

    Article  MathSciNet  Google Scholar 

  24. O. Schramm and J. Steif, Quantitative Noise Sensitivity and Exceptional Times for Percolation, preprint math.PR/0504586 (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Camia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camia, F., Fontes, L.R.G. & Newman, C.M. The Scaling Limit Geometry of Near-Critical 2D Percolation. J Stat Phys 125, 1155–1171 (2006). https://doi.org/10.1007/s10955-005-9014-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-9014-6

Keywords

Navigation