Skip to main content
Log in

Renormalization Group Approach to Multiscale Modelling in Materials Science

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Dendritic growth, and the formation of material microstructure in general, necessarily involves a wide range of length scales from the atomic up to sample dimensions. The phase field approach of Langer, enhanced by optimal asymptotic methods and adaptive mesh refinement, copes with this range of scales, and provides an effective way to move phase boundaries. However, it fails to preserve memory of the underlying crystallographic anisotropy, and thus is ill-suited for problems involving defects or elasticity. The phase field crystal (PFC) equation—a conserving analogue of the Swift-Hohenberg equation—is a phase field equation with periodic solutions that represent the atomic density. It can natively model elasticity, the formation of solid phases, and accurately reproduces the nonequilibrium dynamics of phase transitions in real materials. However, the PFC models matter at the atomic scale, rendering it unsuitable for coping with the range of length scales in problems of serious interest. Here, we show that a computationally-efficient multiscale approach to the PFC can be developed systematically by using the renormalization group or equivalent techniques to derive appropriate coarse-grained coupled phase and amplitude equations, which are suitable for solution by adaptive mesh refinement algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Langer, Directions in Condensed Matter Physics in G. Grinstein and G. Mazenko (Ed.), (World Scientific, Singapore, 1986), pp. 164à–186.

  2. J. B. Collins and H. Levine Phys. Rev. B 31:6118 (1985).

    ADS  Google Scholar 

  3. A. Karma and W. J. Rappel Phys. Rev. E 57:4323 (1998).

    Article  ADS  Google Scholar 

  4. N. Provatas, N. Goldenfeld, and J. Dantzig Phys. Rev. Lett. 80:3308 (1998).

    Article  ADS  Google Scholar 

  5. J. A. Warren, W. J. Boettinger, C. Beckermann, and A. Karma Ann. Rev. Mat. Sci. 32:163 (2002).

    Article  Google Scholar 

  6. J. Jeong, N. Goldenfeld, and J. Dantzig Phys. Rev. E 64:041602:1 (2001).

    Article  Google Scholar 

  7. J. Jeong, J. A. Dantzig, and N. Goldenfeld Met. Trans. A 34, 459 (2003).

    Google Scholar 

  8. R. Phillips, Crystals, defects and microstructures: Modeling across scales (Cambridge University Press, 2001).

  9. D. D. Vvedensky J. Phys. Condens. Matter. 16:R1537 (2004).

    Article  ADS  Google Scholar 

  10. E. B. Tadmor, M. Ortiz, and R. Phillips Phil. Mag. A 73:1529 (1996).

    Google Scholar 

  11. V. B. Shenoy, R. Miller, E. B. Tadmor, R. Phillips, and M. Ortiz Phys. Rev. Lett. 80:742 (1998).

    Article  ADS  Google Scholar 

  12. J. Knap and M. Ortiz J. Mech. Phys. Solids 49:1899 (2001).

    Article  Google Scholar 

  13. R. E. Miller and E. B. Tadmor Journal of Computer-Aided Materials Design 9:203 (2002).

    Article  ADS  Google Scholar 

  14. W. E. B. Enquist and Z. Huang Phys. Rev. B 67: 092101:1 (2003).

  15. W. E. and Z. Huang Phys. Rev. Lett. 87:135501:1 (2001).

  16. R. E. Rudd and J. Broughton Phys. Rev. B 58:R5893 (1998).

    Article  ADS  Google Scholar 

  17. J. Q. Broughton, F. F. Abraham, N. Bernstein, and E. Kaxiras Phys. Rev. B 60:2391 (1998).

    Article  ADS  Google Scholar 

  18. C. Denniston and M. O. Robbins Phys. Rev. E 69:021505:1 (2004).

    Article  Google Scholar 

  19. S. Curtarolo and G. Ceder Phys. Rev. Lett. 88:255504:1 (2002).

    Article  Google Scholar 

  20. J. Fish and W. Chen Comp. Meth. Appl. Mech. Eng. 193: 1693 (2004).

    Google Scholar 

  21. W. E and X. Li (2004), to be published. Available at http://www.math.princeton.edu/multiscale/el.ps.

  22. J. A. Warren, R. Kobayashi, A. E. Lobkovsky, and W. C. Carter Acta. Mater. 51:6035 (2003).

    Article  Google Scholar 

  23. K. R. Elder, M. Katakowski, M. Haataja, and M. Grant Phys. Rev. Lett. 88:245701:1 (2002).

    Article  Google Scholar 

  24. K. R. Elder and M. Grant Phys. Rev. E 70:051605:1 (2004).

    Article  Google Scholar 

  25. N. Goldenfeld, O. Martin, Y. Oono, and F. Liu Phys. Rev. Lett. 64:1361 (1990).

    Article  PubMed  ADS  Google Scholar 

  26. N. Goldenfeld, Lectures on phase transitions and the renormalization group (Addison-Wesley, 1992).

  27. C. Bowman and A. C. Newell Rev. Mod. Phys. 70:289 (1998).

    Article  ADS  Google Scholar 

  28. M. C. Cross and P. C. Hohenberg Rev. Mod. Phys. 65: 851 (1993).

    Article  ADS  Google Scholar 

  29. L. Chen, N. Goldenfeld, and Y. Oono Phys. Rev. E 54: 376 (1996).

    Article  ADS  Google Scholar 

  30. R. Graham Phys. Rev. Lett. 76:2185 (1996).

    Article  PubMed  ADS  Google Scholar 

  31. K. Nozaki, Y. Oono, and Y. Shiwa Phys. Rev. E 62: R4501 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  32. S. Sasa Physica D 108:45 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  33. Y. Shiwa Phys. Rev. E 63:016119:1 (2000).

    MathSciNet  Google Scholar 

  34. M. C. Cross and A. C. Newell Physica D 10:299 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  35. T. Passot and A. C. Newell Physica D 74:301 (1994).

    Article  ADS  Google Scholar 

  36. A. C. Newell, T. Passot, and J. Lega Annu. Rev. Fluid Mech. 25:399 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  37. S. A. Brazovskii Zh. Eksp. Teor. Fiz. 68:175 (1975).

    Google Scholar 

  38. J. Swift and P. C. Hohenberg Phys. Rev. A 15:319 (1977).

    Article  ADS  Google Scholar 

  39. G. H. Gunaratne, Q. Ouyang, and H. Swinney, Phys. Rev. E 50:2802 (1994).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

PACS numbers: 81.16.Rf, 05.10.Cc, 61.72.Cc, 81.15.Aa

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldenfeld, N., Athreya, B.P. & Dantzig, J.A. Renormalization Group Approach to Multiscale Modelling in Materials Science. J Stat Phys 125, 1015–1023 (2006). https://doi.org/10.1007/s10955-005-9013-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-9013-7

KEY WORDS:

Navigation