Skip to main content
Log in

The Phonon Boltzmann Equation, Properties and Link to Weakly Anharmonic Lattice Dynamics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

For low density gases the validity of the Boltzmann transport equation is well established. The central object is the one-particle distribution function, f, which in the Boltzmann-Grad limit satisfies the Boltzmann equation. Grad and, much refined, Cercignani argue for the existence of this limit on the basis of the BBGKY hierarchy for hard spheres. At least for a short kinetic time span, the argument can be made mathematically precise following the seminal work of Lanford. In this article a corresponding program is undertaken for weakly nonlinear, both discrete and continuum, wave equations. Our working example is the harmonic lattice with a weakly nonquadratic on-site potential. We argue that the role of the Boltzmann f-function is taken over by the Wigner function, which is a very convenient device to filter the slow degrees of freedom. The Wigner function, so to speak, labels locally the covariances of dynamically almost stationary measures. One route to the phonon Boltzmann equation is a Gaussian decoupling, which is based on the fact that the purely harmonic dynamics has very good mixing properties. As a further approach the expansion in terms of Feynman diagrams is outlined. Both methods are extended to the quantized version of the weakly nonlinear wave equation.

The resulting phonon Boltzmann equation has been hardly studied on a rigorous level. As one novel contribution we establish that the spatially homogeneous stationary solutions are precisely the thermal Wigner functions. For three phonon processes such a result requires extra conditions on the dispersion law. We also outline the reasoning leading to Fourier’s law for heat conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Peierls, Zur kinetischen Theorie der Wärmeleitung in Kristallen. Annalen Physik 3:1055–1101 (1929).

    MATH  Google Scholar 

  2. G. Leibfried, Gittertheorie der mechanischen und thermischen Eigenschaften der Kristalle, Handbuch der Physik Band VII/1, Kristallphysik, ed. S. Flügge, Springer, Berlin 1955.

    Google Scholar 

  3. V. L. Gurevich, Transport in Phonon Systems, North-Holland 1986.

  4. G. P. Srivastava, The Physics of Phonons, Adam Hilger, Bristol 1990.

    Google Scholar 

  5. J. Callaway, Quantum Theory of the Solid State, Academic Press 1974.

  6. A. J. H. McGaughey and M. Kaviany, Quantitative validation of the Boltzmann transport equation phonon thermal conductivity model under the single mode relaxation time approximation. Phys. Rev. B69:094303 (2004).

    ADS  Google Scholar 

  7. C. J. Glassbrenner and G. Slack, Thermal conductivity of Silicon and Germanium from 3°K to the melting point. Phys. Rev. 134:A1058–A1069 (1964).

    Article  ADS  Google Scholar 

  8. S. Fujita, Introduction to Nonequilibrium Quantum Statistical Mechanics, Saunders 1966.

  9. L. Ryzhik, G. Papanicolaou, and J. B. Keller, Transport equations for elastic and other waves in random media. Wave Motion 24:327–370 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  10. V. E. Zakharov, V. S. L’vov, and G. Falkovich, Kolmogorov Spectra of Turbulence: I Wave Turbulence. Springer, Berlin 1992.

    Google Scholar 

  11. P. Janssen, The Interaction of Waves and Wind, Cambridge University Press 2004.

  12. G. Eyink and H. Spohn, Space-time invariant states of the ideal gas with finite number, energy, and entropy density, in: On Dobrushin’s Way. From Probability Theory to Statistical Physics, eds. R. Minlos, S. Shlosman, and Y. Suchov, Advances in the Mathematical Sciences, Ser. 2, Vol. 198, pp. 71–89. AMS 2000.

  13. A. Mielke, Macroscopic behavior of microscopic oscillations in harmonic lattices, preprint 118 of SPP ’Analysis, Modeling and Simulation of Multiscale Problems’ (2004).

  14. R. L. Dobrushin, A. Pellegrinotti, Yu.M. Suhov, and L. Triolo, One-dimensional harmonic lattice caricature of hydrodynamics. J. Stat. Phys. 43:571–607 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Dudnikova and H. Spohn, Local stationarity for lattice dynamics in the harmonic approximation, preprint, arXiv:math-ph/0505031.

  16. L. Erdös, M. Salmhofer, and H. T. Yau, On the quantum Boltzmann equation. J. Stat. Phys. 116:367–380 (2004).

    Article  Google Scholar 

  17. O. Bratelli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics 2, 2nd edition. Springer, Berlin 1996.

    Google Scholar 

  18. H. Spohn, unpublished notes, 2005.

  19. D. Benedetto, F. Castella, R. Esposito, and M. Pulvirenti, Some considerations on the derivation of the nonlinear quantum Boltzmann equation. J. Stat. Phys. 116:381–410 (2004).

    Article  MathSciNet  Google Scholar 

  20. N. M. Hugenholtz, Derivation of the Boltzmann equation for a Fermi gas. J. Stat. Phys. 32:231–254 (1983).

    Article  MathSciNet  Google Scholar 

  21. N. T. Ho and L. J. Landau, Fermi gas on a lattice in the van Hove limit. J. Stat. Phys. 87:821–845 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  22. C. Cercignani and G. M. Kremer, On relativistic collisional invariants. J. Stat. Phys. 96:439–445 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Lukkarinen and H. Spohn, Kinetic limit for wave propagation in a random medium, preprint, arXiv:math-ph/0505075.

  24. L. Erdös and H. T. Yau, Linear Boltzmann equation as a weak coupling limit of the random Schrödinger equation. Commun. Pure Appl. Math. 53:667–735 (2000).

    Article  MATH  Google Scholar 

  25. L. Erdös, Linear Boltzmann equation as the long time dynamics of an electron weakly coupled to a phonon field. J. Stat. Phys. 107:1043–1128 (2002).

    Article  MATH  Google Scholar 

  26. T. Chen, Localization lengths and Boltzmann limit for the Anderson model at small disorder in dimension 3. J. Stat. Phys., online (2005).

  27. T. Chen, Lr-Convergence of a random Schrödinger to a linear Boltzmann evolution, preprint, arXiv:math-ph/0407037.

  28. L. W. Nordheim, On the kinetic method in the new statistics and its application in the electron theory of conductivity. Proc. Roy. Soc. 689–698 (1929).

  29. R. Brout, I. Prigogine, Statistical mechanics of irreversible processes part V: anharmonic forces. Physica 22:35–47 (1956).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. I. Prigogine, Nonequilibrium Statistical Mechanics, Wiley-Interscience, New York 1962.

    Google Scholar 

  31. M. Kac, Foundations of Kinetic Theory, Proc. 3rd Berkeley Symposium, Math. Stat. Prob., J. Newman, ed., Univ. of California, Vol. 3, pp. 174–197, 1956.

  32. M. C. Carvalho, E. Carlen, and M. Loss, Determination of the spectral gap in Kac’s master equation and related stochastic evolutions. Acta Math. 191:1–54 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  33. L. van Hove, Quantum-mechanical perturbations giving rise to a statistical transport equation. Physica 21: 517–540 (1955).

    MATH  MathSciNet  Google Scholar 

  34. E. Wigner, On the quantum correction for thermodynamic equilibrium. Phys. Rev. 49:749–759 (1932).

    Article  ADS  Google Scholar 

  35. L. Erdös, M. Salmhofer, H.-T. Yau, Quantum diffusion of random Schrödinger evolution in the scaling limit, preprint, arXiv:math-ph/0502025.

  36. G. Bal, T. Komorowski, and L. Ryzhik, Self-averaging of Wigner transforms in random media. Comm. Math. Phys. 242: 81–135 (2003).

    ADS  MathSciNet  MATH  Google Scholar 

  37. E. Fermi, J. Pasta, and S. Ulam, Studies in nonlinear problems, I, in Nonlinear Wave Motion, A.C. Newell, ed. (American Mathematical Society, Providence, RI, 1974), pp. 143–156. Originally published as Los Alamos Report LA-1940 in 1955.

  38. E. A. Jackson, Nonlinearity and irreversibility in lattice dynamics, Rocky Mount. J. Math. 8:127–196 (1978).

    Google Scholar 

  39. S. Lepri, R. Livi, and A. Politi, Thermal conductivity in classical low-dimensional lattices. Physics Reports 377:1–80 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  40. F. Bonetto, J. L. Lebowitz, and L. Rey-Bellet, Fourier’s law: A challenge to theorists, in Mathematical Physics 2000, A. Fokas, A. Grigoryan, T. Kibble, and B. Zegarlinski, eds. (Imperial College Press, London, 2000), pp. 128–150.

    Google Scholar 

  41. K. Aoki and D. Kusnezov, Nonequilibrium statistical mechanics of classical lattice phi4 field theory. Ann. Phys. 295:50–80 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. G. R. Lee-Dadswell, B. G. Nickel, and C. G. Gray, Thermal conductivity and bulk viscosity in quartic oscillator chains, preprint (2005).

  43. S. Lepri, Memory effects and heat transport in one-dimensional insulators. Eur. Phys. J. B18:441–446 (2000).

    ADS  Google Scholar 

  44. R. Lefevere and A. Schenkel, Perturbative analysis of anharmonic chains of oscillators out of equilibrium. J. Stat. Phys. 115:1389–1421 (2004).

    Article  MathSciNet  Google Scholar 

  45. P. L. Garrido, S. Goldstein, and J. L. Lebowitz, Boltzmann entropy for dense fluids not in local equilibrium. Phys. Rev. 92:050602 (2004).

    Google Scholar 

  46. S. Goldstein and J. L. Lebowitz, On the (Boltzmann) entropy of nonequilibrium systems. Physica D 193:53–66 (2004).

    ADS  MathSciNet  MATH  Google Scholar 

  47. G. M. Zaslavskiui and R. Z. Sagdeev, Limits of statistical description of a nonlinear wave field. Soviet Physics JETP 25:718–724 (1967).

    ADS  Google Scholar 

  48. A. C. Newell, S. Nazarenko, and L. Biven, Wave turbulence and intermittency. Physica D 152–153:520–550 (2001).

    MathSciNet  Google Scholar 

  49. Y. Choi, Y. V. Lvov, and S. Nazarenko, Joint statistics of amplitudes and phases in wave turbulence. Physica D 201:121–149 (2005).

    ADS  MathSciNet  MATH  Google Scholar 

  50. Y. Choi, Y. V. Lvov, S. Nazarenko, and B. Pokorni, Anomalous probability of large amplitudes in wave turbulence, preprint, arXiv:math-ph/0404022.

  51. Y. Choi, Y. V. Lvov, and S. Nazarenko, Wave turbulence, preprint, arXiv:math-ph/0412045.

  52. V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical aspects of classical and celestial mechanics, Dynamical Systems III, Springer, Berlin 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Spohn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spohn, H. The Phonon Boltzmann Equation, Properties and Link to Weakly Anharmonic Lattice Dynamics. J Stat Phys 124, 1041–1104 (2006). https://doi.org/10.1007/s10955-005-8088-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-8088-5

Key Words

Navigation