Skip to main content
Log in

Entropy-Driven Phase Transition in a Polydisperse Hard-Rods Lattice System

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study a system of rods on2, with hard-core exclusion. Each rod has a length between 2 and N. We show that, when N is sufficiently large, and for suitable fugacity, there are several distinct Gibbs states, with orientational long-range order. This is in sharp contrast with the case N = 2 (the monomer-dimer model), for which Heilmann and Lieb proved absence of phase transition at any fugacity. This is the first example of a pure hard-core system with phases displaying orientational order, but not translational order; this is a fundamental characteristic feature of liquid crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bricmont, K. Kuroda and J. L. Lebowitz, The structure of Gibbs states and phase coexistence for nonsymmetric continuum Widom-Rowlinson models, Z. Wahrsch. Verw. Gebiete 67(2), (1984) pp. 121–138.

    Article  MathSciNet  Google Scholar 

  2. O. J. Heilmann and E. H. Lieb, Lattice models for liquid crystals, J. Statist. Phys. 20(6), (1979) pp. 679–693.

    Article  MathSciNet  Google Scholar 

  3. O. J. Heilmann and E. H. Lieb, Theory of monomer-dimer systems, Comm. Math. Phys. 25, (1972) pp. 190–232.

    Article  ADS  MathSciNet  Google Scholar 

  4. J. van den Berg, On the absence of phase transition in the monomer-dimer model, Perplexing problems in probability, Progr. Probab. 44, (Birkhäuser Boston, Boston, MA 1999) pp. 185–195.

  5. R. L. Dobrushin and V. Warstat, Completely analytic interactions with infinite values, Probab. Theory Related Fields 84(3), (1990) pp. 335–359.

    Article  MathSciNet  Google Scholar 

  6. L. Onsager, The effects of shape on the interaction of colloidal particles, Ann. N. Y. Acad. Sci. 51, (1949) pp. 627–659.

    Google Scholar 

  7. D. A. Huckaby, Phase transitions in lattice gases of hard-core molecules having two orientations, J. Statist. Phys. 17(5), (1977) pp. 371–375.

    Article  MathSciNet  Google Scholar 

  8. J. L. Lebowitz and G. Gallavotti, Phase transitions in binary lattice gases, J. Math. Phys. 12, (1971) pp. 1129–1133.

    Article  Google Scholar 

  9. O. J. Heilmann, Existence of phase transition in certain lattice gases with repulsive potential, Lett. Nuovo Cim. 3, (1972) pp. 95–1xx.

  10. C. Gruber and H. Kunz, General properties of polymer systems, Comm. Math. Phys. 22, (1971) pp. 133–161.

    Article  ADS  MathSciNet  Google Scholar 

  11. R. Kotecký and D. Preiss, Cluster expansion for abstract polymer models, Comm. Math. Phys. 103(3), (1986) pp. 491–498.

    Article  ADS  MathSciNet  Google Scholar 

  12. Kenneth S. Berenhaut and Robert Lund, Geometric renewal convergence rates from hazard rates, J. Appl. Probab. 38(1), (2001) pp. 180–194.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ioffe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ioffe, D., Velenik, Y. & Zahradník, M. Entropy-Driven Phase Transition in a Polydisperse Hard-Rods Lattice System. J Stat Phys 122, 761–786 (2006). https://doi.org/10.1007/s10955-005-8085-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-8085-8

Key Words

Navigation