Skip to main content
Log in

From Reactive Boltzmann Equations to Reaction–Diffusion Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the reactive Boltzmann equations for a mixture of different species of molecules, including a fixed background. We propose a scaling in which the collisions involving this background are predominant, while the inelastic (reactive) binary collisions are very rare. We show that, at the formal level, the solutions of the Boltzmann equations converge toward the solutions of a reaction-diffusion system. The coefficients of this system can be expressed in terms of the cross sections of the Boltzmann kernels. We discuss various possible physical settings (gases having internal energy, presence of a boundary, etc.), and present one rigorous mathematical proof in a simplified situation (for which the existence of strong solutions to the Boltzmann equation is known).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Abramowitz and I. A. Stegun (Eds.). Handbook of Mathematical Functions (Dover, New York, 1965).

  • M. Bisi, M. Groppi, and G. Spiga, Grad's distribution functions in the kinetic equations for a chemical reaction. Contin. Mech. Thermodyn. 14:207–222 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • C. Cercignani. The Boltzmann Equation and its Applications (Springer Verlag, New York, 1988).

    MATH  Google Scholar 

  • S. Chapman, and T. G. Cowling. The Mathematical Theory of Non-uniform Gases (Cambridge University Press, Cambridge, 1970).

    Google Scholar 

  • V. Giovangigli. Multicomponent Flow Modeling (Birkhäuser, Boston, 1999).

    MATH  Google Scholar 

  • R. Dautray and J. L. Lions. Analyse mathématique et calcul numéerique pour les sciences et les techniques, Vol. 9, Evolution: numérique, transport (Paris, MASSON, 1988).

  • P. Degond and B. Lucquin–Desreux. Transport coefficients of plasmas and disparate mass binary gases.Transport Theory Statist. Phys. 25:595–633 (1996).

    MathSciNet  MATH  Google Scholar 

  • P. Degond and B. Lucquin–Desreux. The asymptotics of collision operators for two species of particles of disparate masses. Math. Models Methods Appl. Sci. 6:405–436 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  • A. De Masi, P. A. Ferrari and J. L. Lebowitz. Reaction–Diffusion equations for interacting particle systems. J. Stat. Phys. 44:589–644 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  • A. De Masi and E. Presutti. Mathematical methods for hydrodynamic limits (Springer–Verlag, Berlin, 1991).

    Google Scholar 

  • L. Desvillettes and F. Golse. A remark concerning the Chapman–Enskog asymptotics. Ser. Adv. Math. Appl. Sci. 22:191–203 (1992).

    MathSciNet  Google Scholar 

  • L. Desvillettes, R. Monaco and F. Salvarani. A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions. European Journal of Mechanics B/ Fluids 24:219–236 (2005).

    MathSciNet  MATH  Google Scholar 

  • T. Goudon and P. Lafitte. A coupled model for radiative transfer: Doppler effects, equilibrium and non equilibrium diffusion asymptotics, Preprint.

  • M. Groppi and G. Spiga. Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas. J. Math. Chem. 26:197–219 (1999).

    Article  MATH  Google Scholar 

  • A. Rossani and G. Spiga. A note on the kinetic theory of chemically reacting gases. Physica A 272:563–573 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  • F. Rothe. Global Solutions of Reaction-Diffusion Systems. Lecture Notes in Mathematics (Springer, Berlin, 1984).

    MATH  Google Scholar 

  • R. Spigler and D. H. Zanette. Reaction–diffusion models from the Fokker–Planck formulation of chemical processes. IMA J. Appl. Math. 49:217–229 (1992).

    MathSciNet  MATH  Google Scholar 

  • R. Spigler and D. H. Zanette. Asymptotic analysis and reaction–diffusion approximation for BGK kinetic models of chemical processes in multispecies gas mixtures. J. Appl. Math. Phys. (ZAMP) 44:812–827 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  • R. Spigler and D. H. Zanette. A BGK model for chemical processes: The reaction–diffusion approximation. Math. Mod. Meth. Appl. Sci. 4:35–47 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  • A. S. Sznitman. Propagation of Chaos for a System of Annihilating Brownian Spheres. Comm. Pure Appl. Math. 40:663–690 (1987).

    MATH  MathSciNet  Google Scholar 

  • D. H. Zanette. Linear and nonlinear diffusion and reaction-diffusion equations from discrete-velocity kinetic models. J. Phys. A: Math. Gen. 26:5339–5349 (1993).

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bisi, M., Desvillettes, L. From Reactive Boltzmann Equations to Reaction–Diffusion Systems. J Stat Phys 124, 881–912 (2006). https://doi.org/10.1007/s10955-005-8075-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-8075-x

Keywords

Navigation