Skip to main content
Log in

Kramers Equation and Supersymmetry

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Hamilton’s equations with noise and friction possess a hidden supersymmetry, valid for time-independent as well as periodically time-dependent systems. It is used to derive topological properties of critical points and periodic trajectories in an elementary way. From a more practical point of view, the formalism provides new tools to study the reaction paths in systems with separated time scales. A ‘reduced current’ which contains the relevant part of the phase space probability current is introduced, together with strategies for its computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Milnor, Morse Theory (Princeton University Press, 1963).

  2. E. Witten, J. Diff. Geom. 17:661 (1982).

    MATH  MathSciNet  Google Scholar 

  3. H. Nicolai, Nucl. Phys. B 176:419 (1980a).

    Article  ADS  MathSciNet  Google Scholar 

  4. H. Nicolai, Phys. Lett. B 89:341 (1980b).

    ADS  MathSciNet  Google Scholar 

  5. G. Parisi and N. Sourlas, Nucl. Phys. B206:321 (1982).

    ADS  MathSciNet  Google Scholar 

  6. S. Cecotti and L. Girardello, Ann. Phys. (N.Y.) 145:81 (1983).

    Article  MathSciNet  Google Scholar 

  7. S. Tănase-Nicola and J. Kurchan, Journal of Statistical Physics 116(5/6): (2004).

  8. S. Tănase-Nicola and J. Kurchan, Phys. Rev. Lett. 91:188302 (2003).

    ADS  Google Scholar 

  9. E. Gozzi, Progress of Theoretical Physics Supplement 111:115 (1993).

    MATH  MathSciNet  Google Scholar 

  10. E. Deotto, E. Gozzi and D. Mauro, J. Math. Phys. 44:5902 (2003a).

    ADS  MathSciNet  Google Scholar 

  11. E. Deotto, E. Gozzi and D. Mauro, J. Math. Phys. 44:5937 (2003b).

    ADS  MathSciNet  Google Scholar 

  12. A. J. Niemi, Phys. Lett. B 355:501 (1995).

    ADS  MATH  MathSciNet  Google Scholar 

  13. A. J. Niemi and P. Pasanen, Phys. Lett. B 386:123 (1996).

    ADS  MathSciNet  Google Scholar 

  14. M. Miettinen and A. J. Niemi, Phys. Lett. B 461:89 (1999).

    ADS  MathSciNet  Google Scholar 

  15. H. Risken, The Fokker-Plank equation (Springer, 1996).

  16. M. Nakahara, Geometry, Topology and Physics (Adam Hilber, 1990).

  17. P. Jung and P. Hänggi, Phys. Rev. A. 44:8032 (1991).

    ADS  Google Scholar 

  18. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Oxford Science Publication, 1996).

  19. O. Cepas and J. Kurchan, cond-mat/9706296 (1997).

  20. H. Kleinert and S. V. Shabanov, Physics Letters A 235:105 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  21. B. Helffer and F. Nier, Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians, vol. 1862 of Lecture Notes in Mathematics (Springer, 2005).

  22. R. Mannella, Phys. Rev. E 69:041107 (2004).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Tailleur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tailleur, J., Tănase-Nicola, S. & Kurchan, J. Kramers Equation and Supersymmetry. J Stat Phys 122, 557–595 (2006). https://doi.org/10.1007/s10955-005-8059-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-8059-x

Key Words

Navigation