Skip to main content
Log in

The Dunkl–Fokker–Planck Equation in \(1+1\) Dimensions

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

By replacing the spatial derivative with the Dunkl derivative, we generalize the Fokker-Planck equation in (1+1) dimensions. We obtain the Dunkl–Fokker–Planck eigenvalues equation and solve it for the harmonic oscillator plus a centrifugal-type potential. Furthermore, when the drift function is odd, we reduce our results to those of the recently developed Wigner–Dunkl supersymmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. G.A. Pavliotis, Stochastic Processes and Applications (Springer, New York, 2014)

    Book  Google Scholar 

  2. M.O. Cáceres, Non-equilibrium Statistical Physics with Application to Disordered Systems (Springer, Berlin, 2017)

    Book  Google Scholar 

  3. W. Sung, Statistical Physics for Biological Matter (Springer, Singapore, 2018)

    Book  Google Scholar 

  4. H. Risken, The Fokker-Planck Equation: Methods of Solutions and Applications (Springer, Berlin, 1996)

    Book  Google Scholar 

  5. G. Junker, Supersymmetric Methods in Quantum, Statistical and Solid State Physics (2019), IOP Publishing, Bristol

  6. A. Elhanbaly, Phys. Scr. 59, 9 (1999)

    Article  ADS  CAS  Google Scholar 

  7. W.M. Sthelen, V.I. Stogny, J. Phys. A: Math. Gen. 22, L539 (1989)

    Article  ADS  Google Scholar 

  8. M. Bernstein, L.S. Brown, Phys. Rev. Lett. 52, 1933 (1984)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  9. F. Polotto, M.T. Araujo, E.D. Filho, J. Phys. A: Math. Theor. 43, 015207 (2010)

    Article  ADS  Google Scholar 

  10. R.C. Anjos, G.B. Freitas, C.H. Coimbra-Araújo, J. Stat. Phys. 162, 387 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. V.X. Genest, M.E.H. Ismail, L. Vinet, A. Zhedanov, J. Phys. A: Math. Theor. 46, 145201 (2013)

    Article  ADS  Google Scholar 

  12. V.X. Genest, M.E.H. Ismail, L. Vinet, A. Zhedanov, Commun. Math. Phys. 329, 999 (2014)

    Article  ADS  Google Scholar 

  13. V.X. Genest, L. Vinet, A. Zhedanov, J. Phys: Conf. Ser. 512, 012010 (2014)

    Google Scholar 

  14. V.X. Genest, A. Lapointe, L. Vinet, Phys. Lett. A 379, 923 (2015)

    Article  MathSciNet  CAS  Google Scholar 

  15. S. Ghazouani, I. Sboui, M. A. Amdouni and M. B. El Hadj Rhouma, J. Phys. A: Math. Theor.52 (2019) 225202

  16. S. Ghazouani, I. Sboui, J. Phys. A: Math. Theor. 53, 035202 (2019)

    Article  ADS  Google Scholar 

  17. S. Ghazouani, J. Phys. A: Math. Theor. 55, 505203 (2022)

    Article  Google Scholar 

  18. A. Schulze-Halberg, Phys. Scr. 97, 085213 (2022)

    Article  ADS  CAS  Google Scholar 

  19. A. Schulze-Halberg, Eur. Phys. J. Plus 138, 491 (2023)

    Article  Google Scholar 

  20. S.-H. Dong, W.-H. Huang, W.S. Chung, H. Hassanabadi, EPL 135, 30006 (2021)

    Article  ADS  CAS  Google Scholar 

  21. B. Hamil, B.C. Lütfüoğlu, Eur. Phys. J. Plus 137, 812 (2022)

    Article  Google Scholar 

  22. B. Hamil, B.C. Lütfüoğlu, Phys. A 623, 128841 (2023)

    Article  Google Scholar 

  23. F. Merabtine, B. Hamil, B.C. Lütfüoğlu, A. Hocine, M. Benarous, J. Stat. Mech. 5, 053102 (2023)

    Article  Google Scholar 

  24. C. Quesne, J. Phys. A: Math. Theor.56 265203

  25. C. Quesne, Quasi-exactly solvable potentials in Wigner-Dunkl quantum mechanics. arXiv preprint arXiv:2401.04586 (2024)

  26. G. Junker, J. Phys. A: Math. Theor.57 075201

  27. B. Hamil, B.C. Lütfüoğlu, Eur. Phys. J. Plus 137, 1241 (2022)

    Article  Google Scholar 

  28. N. Rouabhia, M. Merad, B. Hamil, EPL 143, 52003 (2023)

    Article  ADS  Google Scholar 

  29. S. Hassanabadi, P. Sedaghatnia, W.S. Chung, B.C. Lütfüoğlu, J. Kříž, H. Hassanabadi, Eur. Phys. J. Plus 138, 331 (2023)

    Article  Google Scholar 

  30. S. Hassanabadi, J. Kříž, B.C. Lütfüoğlu, H. Hassanabadi, Phys. Scr. 97, 125305 (2022)

    Article  ADS  CAS  Google Scholar 

  31. H.J. Carmichael, J.S. Satchell, S. Sarkar, Phys. Rev. A 34, 3166 (1986)

    Article  ADS  CAS  Google Scholar 

  32. C. Wang, R. Vyas, Phys. Rev. A 54, 4453 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  33. B.J. Dalton, B.M. Garraway, J. Jeffers, S.M. Barnett, Ann. Phys. 334, 100 (2013)

    Article  ADS  CAS  Google Scholar 

  34. J. Larson, T. Mavrogordatos, The Jaynes-Cummings Model and Its Descendants (IOP Publishing, Bristol, 2022)

    Google Scholar 

  35. M. Moshinsky, Y.F. Smirnov, The Harmonic Oscillator in Modern Physics (Harwood Academic, Amsterdam, 1996)

    Google Scholar 

  36. H. Garcilazo, T. Mizutani, \(\pi \)NN systems (World Scientific, Singapore, 1990)

  37. B. Hamil, B.C. Lütföğlu, Few-Body Syst. 63, 74 (2022)

    Article  ADS  Google Scholar 

  38. A. Merad, M. Merad, Few-Body Syst. 62, 98 (2021)

    Article  ADS  Google Scholar 

  39. A. Schulze-Halberg, Few-Body Syst. 64, 84 (2023)

    Article  ADS  Google Scholar 

  40. S.H. Dong, W.S. Chung, G. Junker, H. Hassanabadi, Results Phys. 39, 105664 (2022)

    Article  Google Scholar 

  41. M.J. Englefield, J. Stat. Phys. 52, 369 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  42. C.L. Ho, Ann. Phys. 326, 797 (2011)

    Article  ADS  CAS  Google Scholar 

  43. N.C. Petroni, S. De Martino, S. De Siena, Phys. Lett. A 245, 1 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  44. M.V. Ioffe, D.N. Nishnianidze, EPL 129, 61001 (2020)

    Article  ADS  CAS  Google Scholar 

  45. W.S. Chung, H. Hassanabadi, Mod. Phys. Lett. A 34, 1950190 (2019)

    Article  ADS  Google Scholar 

  46. F. Cooper, A. Khare, U. Sukhatme, Supersymmetry in Quantum Mechanics (World Scientific, London, 2001)

    Book  Google Scholar 

  47. B.K. Bagchi, Supersymmetry in Quantum and Classical Mechanics (World Scientific, Singapore, 2001)

    Google Scholar 

  48. N.N. Lebedev, Special Functions and their applications (Prentice-Hall, New Jersey, 1965)

    Book  Google Scholar 

  49. W.S. Chung, H. Hassanabadi, Eur. Phys. J. Plus 136, 239 (2021)

    Article  Google Scholar 

  50. W.S. Chung, A. Schulze-Halberg, H. Hassanabadi, Eur. Phys. J. Plus 138, 66 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by SNII-Mexico, COFAA-IPN, EDI-IPN, CGPI-IPN Project Numbers 20230633, 20230732, and CONAHCYT-Mexico grant CB-2017-2018-A1-S-30345. We appreciate the observations made by the anonymous referee to improve our work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to D. Ojeda-Guillén.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mota, R.D., Ojeda-Guillén, D. & Xicoténcatl, M.A. The Dunkl–Fokker–Planck Equation in \(1+1\) Dimensions. Few-Body Syst 65, 25 (2024). https://doi.org/10.1007/s00601-024-01898-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-024-01898-1

Navigation