Skip to main content
Log in

Reductions of Hidden Information Sources

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

In all but special circumstances, measurements of time-dependent processes reflect internal structures and correlations only indirectly. Building predictive models of such hidden information sources requires discovering, in some way, the internal states and mechanisms. Unfortunately, there are often many possible models that are observationally equivalent. Here we show that the situation is not as arbitrary as one would think. We show that generators of hidden stochastic processes can be reduced to a minimal form and compare this reduced representation to that provided by computational mechanics – the ε-machine. On the way to developing deeper, measure-theoretic foundations for the latter, we introduce a new two-step reduction process. The first step (internal-event reduction) produces the smallest observationally equivalent σ-algebra and the second (internal-state reduction) removes σ-algebra components that are redundant for optimal prediction. For several classes of stochastic dynamical systems these reductions produce representations that are equivalent to ε-machines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Crutchfield K. Young (1989) ArticleTitleInferring statistical complexity Phys. Rev. Lett. 63 105–108 Occurrence Handle10.1103/PhysRevLett.63.105 Occurrence Handle10040781

    Article  PubMed  Google Scholar 

  2. J. P. Crutchfield C. R. Shalizi (1999) ArticleTitleThermodynamic depth of causal states: objective complexity via minimal representations Phys. Rev. E 59 IssueID1 275–283 Occurrence Handle10.1103/PhysRevE.59.275

    Article  Google Scholar 

  3. C. R. Shalizi J. P. Crutchfield (2001) ArticleTitleComputational mechanics: Pattern and prediction, structure and simplicity J. Stat. Phys. 104 817–879 Occurrence Handle10.1023/A:1010388907793

    Article  Google Scholar 

  4. James E. Hansen (1993) Computational Mechanics of Cellular Automata University of California Berkeley

    Google Scholar 

  5. James P. Crutchfield and Karl Young, Computation at the onset of chaos, in W. H. Zurek, ed. Complexity, Entropy, and the Physics of Information, volume VIII of Santa Fe Institute Studies in the Sciences of Complexity (Addison-Wesley, 1990), pp. 223–269.

  6. David P Feldman (1998) Computational Mechanics of Classical Spin Systems University of California Davis

    Google Scholar 

  7. James P. Crutchfield David P. Feldman (1997) ArticleTitleStatistical complexity of simple one-dimensional spin systems Phys. Rev. E 55 R1239–R1242 Occurrence Handle10.1103/PhysRevE.55.R1239

    Article  Google Scholar 

  8. W. M. Gonçalves R. D. Pinto J. C. Sartorelli M. J. Oliveira Particlede (1998) ArticleTitleInferring statistical complexity in the dripping faucet experiment Physica A 257 385–389

    Google Scholar 

  9. A. J. Palmer C. W. Fairall W. A. Brewer (2000) ArticleTitleComplexity in the atmosphere IEEE Trans. Geosci. Remote Sens 38 2056–2063 Occurrence Handle10.1109/36.851786

    Article  Google Scholar 

  10. Richard W. Clarke, Mervyn P. Freeman, and Nicholas W. Watkins, The application of computational mechanics to the analysis of geomagnetic data, Phys. Rev. E 67:016203 (2003)

  11. Varn Dowman Parks (2001) Language Extraction from ZnS University of Tennessee Knoxville

    Google Scholar 

  12. Dowman P. Varn Geoffrey S. Canright James P. Crutchfield (2002) ArticleTitleDiscovering planar disorder in close-packed structures from x-ray diffraction: Beyond the fault model Phys. Rev. B. 66 IssueID17 174110 Occurrence Handle10.1103/PhysRevB.66.174110

    Article  Google Scholar 

  13. Dowman P. Varn, Geoffrey S. Canright, and James P. Crutchfield, Discovering planar disorder in close-packed structures from x-ray diffraction: Beyond the fault model, Phys. Rev. B. 66(17):174110 (2002)

  14. D. Nerukh G. Karvounis R. C. Glen (2002) ArticleTitleComplexity of classical dynamics of molecular systems. II. Finite statistical complexity of water-Na+ system J. Chem. Phys 117 9618–9622 Occurrence Handle10.1063/1.1518011

    Article  Google Scholar 

  15. D. Blackwell L. Koopmans (1957) ArticleTitleOn the identifiability problem for functions of Markov chains Ann. Math. Statist 28 1011

    Google Scholar 

  16. L. R. Rabiner (1989) ArticleTitleA tutorial on hidden Markov models and selected applications IEEE Proc 77 257 Occurrence Handle10.1109/5.18626

    Article  Google Scholar 

  17. R. J. Elliot L. Aggoun J. B. Moore (1995) Hidden Markov Models: Estimation and Control Volume 29 of Applications of Mathematics Springer New York

    Google Scholar 

  18. C. E. Shannon W. Weaver (1962) The Mathematical Theory of Communication University of Illinois Press Champaign-Urbana

    Google Scholar 

  19. H. Ito S.-I. Amari K. Kobayashi (1962) ArticleTitleIdentifiability of hidden Markov information sources and their minimum degrees of freedom IEEE Info. Th 38 324 Occurrence Handle10.1109/18.119690

    Article  Google Scholar 

  20. J. P. Crutchfield (1994) ArticleTitleThe calculi of emergence: computation, dynamics, and induction Physica D 75 11–54

    Google Scholar 

  21. D. R. Upper, Theory and Algorithms for Hidden Markov Models and Generalized Hidden Markov Models, PhD thesis (University of California, Berkeley, 1997). Published by University Microfilms Intl, Ann Arbor, Michigan.

  22. C. Glymour G. F. Cooper (Eds) (1999) Computation, Causation, and Discovery AAAI Press Menlo Park, California

    Google Scholar 

  23. M. I. Jordan (Eds) (1999) Learning in Graphical Models MIT Press Cambridge, Massachusetts

    Google Scholar 

  24. M. Casdagli S. Eubank (Eds) (1992) Nonlinear Modeling SFI Studies in the Sciences of Complexity Addison-Wesley Reading, Massachusetts

    Google Scholar 

  25. J. E. Hopcroft J. D. Ullman (1969) Introduction to Automata Theory, Languages, and Computation Addison-Wesley Reading

    Google Scholar 

  26. A. Paz (1971) Introduction to Probabilistic Automata Academic Press New York

    Google Scholar 

  27. H. Bauer (1972) Probability Theory and Elements of Measure Theory, International Series in Decision Processes Holt, Reinhardt and Winston, Inc New York

    Google Scholar 

  28. O. Penrose (1970) Foundations of Statistical Mechanics; A Deductive Treatment Pergamon Press Oxford

    Google Scholar 

  29. T. M. Cover J. A. Thomas (1991) Elements of Information Theory Wiley-Interscience New York

    Google Scholar 

  30. J. P Crutchfield (1992) Semantics and thermodynamics M. Casdagli S. Eubank (Eds) Nonlinear Modeling and Forecasting, volume XII of Santa Fe Institute Studies in the Sciences of Complexity Addison-Wesley Reading, Massachusetts 317–359

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nihat Ay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ay, N., Crutchfield, J.P. Reductions of Hidden Information Sources. J Stat Phys 120, 659–684 (2005). https://doi.org/10.1007/s10955-005-6797-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-6797-4

Key words

Navigation