Skip to main content
Log in

A Stochastic Model of Mathematics and Science

  • Research
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We introduce a framework that can be used to model both mathematics and human reasoning about mathematics. This framework involves stochastic mathematical systems (SMSs), which are stochastic processes that generate pairs of questions and associated answers (with no explicit referents). We use the SMS framework to define normative conditions for mathematical reasoning, by defining a “calibration” relation between a pair of SMSs. The first SMS is the human reasoner, and the second is an “oracle” SMS that can be interpreted as deciding whether the question–answer pairs of the reasoner SMS are valid. To ground thinking, we understand the answers to questions given by this oracle to be the answers that would be given by an SMS representing the entire mathematical community in the infinite long run of the process of asking and answering questions. We then introduce a slight extension of SMSs to allow us to model both the physical universe and human reasoning about the physical universe. We then define a slightly different calibration relation appropriate for the case of scientific reasoning. In this case the first SMS represents a human scientist predicting the outcome of future experiments, while the second SMS represents the physical universe in which the scientist is embedded, with the question–answer pairs of that SMS being specifications of the experiments that will occur and the outcome of those experiments, respectively. Next we derive conditions justifying two important patterns of inference in both mathematical and scientific reasoning: (i) the practice of increasing one’s degree of belief in a claim as one observes increasingly many lines of evidence for that claim, and (ii) abduction, the practice of inferring a claim’s probability of being correct from its explanatory power with respect to some other claim that is already taken to hold for independent reasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Notes

  1. Note that in this regard, formulating the physical universe as having inherent stochasticity might make more sense than formulating mathematics that way.

  2. Of course, the community of mathematicians did much else besides produce sets of claims in those years, e.g., they produced working hypotheses, decided among formalisms to use to address a topic, etc. Those other aspects of the behavior of that community do not concern us here; we are only concerned with the end products of their behavior, so to speak.

  3. This is due to the fact that each \(\hat{C}\) can occur in more than one claim vector \(C'\), and so summing over all \(\hat{C}\) means we are double-counting vectors \(C'\), in general.

  4. Note that this differs from \(P^{n}(\{\{(q,v)\} \cup \hat{{C}}: v \in {\mathcal {V}}\} )\), which is the probability that the SMS outputs a claim set that contains \(\hat{C}\) and also contains every claim of the form (qv) for some \(v \in {\mathcal {V}}\).

  5. Note that it is important that our framework allows \(\varphi _2\) to make predictions for distributions over the answers of \(\varphi _1\), not just for the answer directly. After all, scientists almost never directly give a single prediction for the outcome of an experiment, but rather give distributions over such outcomes.

  6. As a technical note, we allow there to be values m such that the partial function \(\Psi\) is undefined for all arguments that involve m elements of \({\mathcal {Q}}_1\).

  7. Note that \(\varphi _1\) and / or \(\varphi _2\) might consider a particular \({{\hat{C}}}\) very unlikely a priori This suggests an alternative definition of calibration to Definition 4.2, under which \(P_1^{n^1}\) and/or \(P_2^{n^2}\) are not conditioned on \({{\hat{C}}}\). We do not investigate this alternative here, for reasons for space.

  8. To derive Eq. (8), note that according to the assumptions made immediately above it, \(P^{n}_{2}(v_{1}|q,\hat{C})=\sum _{v_{2}}P^{n}_{2}(v_{2}|q,\hat{C})\delta (v_{1},v_{2})\) for any \(v_{1}\in {\mathcal {V}}_{1}\). With abuse of notation, for any \(v_{2}\in {\mathcal {V}}_{2}\), let \(\delta ({\mathcal {V}}_{1},v_{2})\) be a vector such that each entry is the value of the delta function \(\delta (v_{1},v_{2})\) for each \(v_{1}\in {\mathcal {V}}_{1}\). Similarly, let \(P^{n}_{2}({\mathcal {V}}_{1}|q,\hat{C})\) be a vector such that each entry is the value of \(P^{n}_{2}({\mathcal {V}}_{1}|q,\hat{C})\) for each \(v_{i}\in {\mathcal {V}}_{1}\). Thus, \(P^{n}_{2}({\mathcal {V}}_{1}|q,\hat{C})=\sum _{v_{2}}P^{n}_{2}(v_{2}|q,\hat{C})\delta ({\mathcal {V}}_{1},v_{2})\). Since D is convex in its first argument, we have \(D[P^{n}_{2}({\mathcal {V}}_{1}|q,\hat{C}),\overline{P}_{1}({\mathcal {V}}_{1}|q,\hat{C})]=D[\sum _{v_{2}}P^{n}_{2}(v_{2}|q,\hat{C})\delta ({\mathcal {V}}_{1},v_{2}),\overline{P}_{1}({\mathcal {V}}_{1}|q,\hat{C})]\le \sum _{v_{2}}P^{n}_{2}(v_{2}|q,\hat{C})D[\delta ({\mathcal {V}}_{1},v_{2}),\overline{P}_{1}({\mathcal {V}}_{1}|q,\hat{C})]\le \epsilon\).

  9. One way of accounting for this “psychological arrow of time” is by appealing to the second law of thermodynamics; see Wolpert [36] and Davies [37].

  10. Note that there is not an analogous issue for the case of mathematician-SMSs. That is because we suppose that mathematicians are interested in “mathematical truth”, which they may never directly observe in any sense. For example, this is the case if mathematical truth is interpreted as being the response distribution of some far-future community of mathematicians that the mathematician will not live long enough to encounter.

  11. Below we will assume that a given collection of claim sets is an evidence collection, i.e., that Eq. (11) holds. It turns out that we can derive Eq. (11) instead, from another assumption, one that might seem more innocuous. That alternative is presented, along with the proof that it results in Eq. (11), in Appendix 2.

  12. One must be careful with this informal interpretation of the prediction distribution though. For example, the proportionality constant in Definition 7.2(2) does not equal 1 in general, since q and \(\psi (q)\) live in different dimensional spaces.

  13. We require \(\psi\) to be invertible to avoid the problem of how to define \(F^n(\psi (q), \hat{C}_2)\) if there is some \(q' \ne q\) such that \(\psi (q') = \psi (q)\), but while \((q, \hat{C}_2)\) is a prediction pair, \((q', \hat{C}_2)\) is not a prediction pair, e.g., because it has zero probability of being generated by \(\varphi _1\).

  14. Note that depending on the choice of the divergence D[., .], this Lipschitz continuity assumption might require that those distributions have full support.

  15. See Viteri and DeDeo [44] for a descriptive study of the role of abduction in mathematical reasoning.

  16. See also work by Chen [74] on the possibility of fundamental vagueness in the laws of nature.

  17. The terms ‘earlier’ and ‘later’ implicitly presuppose a temporal interpretation of the ordering of the SMS. While such an interpretation is not required, it is a natural one, especially when our framework is taken to represent mathematical reasoning by actual humans.

References

  1. Hilbert, D.: Die Grundlagen der Mathematik, pp. 1–21. Springer, New York (1928)

    Book  Google Scholar 

  2. Bueno, O., Colyvan, M.: An inferential conception of the application of mathematics. Noûs 45(2), 345–374 (2011)

    Article  MathSciNet  Google Scholar 

  3. McCullough-Benner, C.: Representing the world with inconsistent mathematics. Br. J. Philos. Sci. 71(4), 1331–1358 (2020)

    Article  MathSciNet  Google Scholar 

  4. Shapiro, S.: Philosophy of Mathematics: Structure and Ontology. Oxford University Press, Oxford (1997)

    Google Scholar 

  5. Peirce, C.S.: How to make our ideas clear. Popul. Sci. Mon. 12, 286–302 (1878)

    Google Scholar 

  6. Ladyman, J.: What is structural realism? Stud. Hist. Philos. Sci. A 29(3), 409–424 (1998). https://doi.org/10.1016/s0039-3681(98)80129-5

    Article  Google Scholar 

  7. Ladyman, J.: Scientific structuralism: on the identity and diversity of objects in a structure. In: Ladyman, J. (ed.) Aristotelian Society Supplementary Volume, vol. 81, pp. 23–43. Blackwell Publishing Ltd, Oxford (2007)

    Google Scholar 

  8. Barrow, J.D.: Theories of Everything: The Quest for Ultimate Explanation. Clarendon Press, Oxford (1991)

    Google Scholar 

  9. Barrow, J.D.: Godel and physics. In: Baaz, M., Papadimitriou, C.H., Putnam, H.W., Scott, D.S., Harper, C.L. (eds.) Kurt Gödel and the Foundations of Mathematics: Horizons of Truth, p. 255. Cambridge University Press, Cambridge (2011)

    Chapter  Google Scholar 

  10. Schmidhuber, J.: A computer scientist’s view of life, the universe, and everything. In: Schmidhuber, J. (ed.) Foundations of Computer Science, pp. 201–208. Springer, New York (1997)

    Chapter  Google Scholar 

  11. Tegmark, M.: Is “the theory of everything’’ merely the ultimate ensemble theory? Ann. Phys. 270(1), 1–51 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  12. Tegmark, M.: The mathematical universe. Found. Phys. 38(2), 101–150 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  13. Tegmark, M.: Our Mathematical Universe: My Quest for the Ultimate Nature of Reality. Vintage, New York (2014)

    Google Scholar 

  14. Bovens, L., Hartmann, S.: Bayesian networks and the problem of unreliable instruments. Philos. Sci. 69(1), 29–72 (2002). https://doi.org/10.1086/338940

    Article  MathSciNet  Google Scholar 

  15. Landes, J.: Variety of evidence. Erkenntnis 85(1), 183–223 (2020)

    Article  MathSciNet  Google Scholar 

  16. Douven, I.: The Art of Abduction. MIT Press, Cambridge (2022)

    Book  Google Scholar 

  17. Weisberg, J.: Locating IBE in the Bayesian framework. Synthese 167(1), 125–143 (2009)

    Article  MathSciNet  Google Scholar 

  18. Wolpert, D.H., Kinney, D.: Noisy deductive reasoning: how humans construct math, and how math constructs universes. In: Aguirre, A., Merali, Z., Sloan, D. (eds.) Undecidability, Uncomputability, and Unpredictability. Springer, New York (2021)

    Google Scholar 

  19. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, Berlin (2012)

    Google Scholar 

  20. Lewis, D.: Immodest inductive methods. Philos. Sci. 38(1), 54–63 (1971)

    Article  Google Scholar 

  21. Greene, B.: The Elegant Universe. Vintage Books, New York (1999)

    Google Scholar 

  22. Carroll, S.M.: The quantum field theory on which the everyday world supervenes. Preprint at http://arxiv.org/abs/2101.07884 (2021)

  23. Dipert, R.R.: The mathematical structure of the world: the world as graph. J. Philos. 94(7), 329–358 (1997)

    MathSciNet  Google Scholar 

  24. Wallace, D.: Stating Structural Realism: Mathematics-First Approaches to Physics and Metaphysics. http://philsci-archive.pitt.edu/20048/ (2021)

  25. Everett, H.: “Relative state’’ formulation of quantum mechanics. Rev. Mod. Phys. 29(3), 454 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  26. Sebens, C.T., Carroll, S.M.: Self-locating uncertainty and the origin of probability in Everettian quantum mechanics. Br. J. Philos. Sci. 69(1), 25–74 (2018)

    Article  MathSciNet  Google Scholar 

  27. Albert, D.Z.: Time and Chance. Harvard University Press, Cambridge (2000)

    Book  Google Scholar 

  28. Loewer, B.: Counterfactuals and the second law. In: Price, H., Corry, R. (eds.) Causation, Physics, and the Constitution of Reality: Russell’s Republic Revisited. Oxford University Press, Oxford (2007)

    Google Scholar 

  29. Loewer, B.: Why there is anything except physics? In: Hohwy, J., Kallestrup, J. (eds.) Being Reduced: New Essays on Reduction, Explanation, and Causation. Oxford University Press, Oxford (2008)

    Google Scholar 

  30. Loewer, B.: Why is there anything except physics? Synthese 170(2), 217–233 (2009)

    Article  MathSciNet  Google Scholar 

  31. Lewis, D.: On the Plurality of Worlds. Oxford Blackwell, Oxford (1986)

    Google Scholar 

  32. Grim, P., Singer, D.: Computational philosophy. In: Zalta, E.N., Nodelman, U. (eds.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Stanford (2022)

    Google Scholar 

  33. Šešelja, D.: Agent-based models of scientific interaction. Philos. Compass 17(7), e12855 (2022). https://doi.org/10.1111/phc3.12855

    Article  Google Scholar 

  34. Dummett, M.: Truth. In: Proceedings of the Aristotelian Society, Vol, p. 59 (1959)

  35. Hacking, I.: On the foundations of statistics. Br. J. Philos. Sci. 15(57), 1–26 (1964)

    Article  MathSciNet  Google Scholar 

  36. Wolpert, D.H.: Memory systems, computation, and the second law of thermodynamics. Int. J. Theor. Phys. 31(4), 743–785 (1992)

    Article  Google Scholar 

  37. Davies, P.C.W.: The Physics of Time Asymmetry. Univ of California Press, Oakland (1977)

    Google Scholar 

  38. Wayne, A.: Bayesianism and diverse evidence. Philos. Sci. 62(1), 111–121 (1995)

    Article  MathSciNet  Google Scholar 

  39. Myrvold, W.C.: Bayesianism and diverse evidence: a reply to Andrew Wayne. Philos. Sci. 63(4), 661–665 (1996)

    Article  Google Scholar 

  40. Fitelson, B.: Wayne, Horwich, and evidential diversity. Philos. Sci. 63(4), 652–660 (1996). https://doi.org/10.1086/289982

    Article  MathSciNet  Google Scholar 

  41. Claveau, F., Grenier, O.: The variety-of-evidence thesis: a Bayesian exploration of its surprising failures. Synthese 19(8), 3001–3028 (2019). https://doi.org/10.1007/s11229-017-1607-5

    Article  MathSciNet  Google Scholar 

  42. Landes, J.: The variety of evidence thesis and its independence of degrees of independence. Synthese 198, 1–31 (2020)

    Google Scholar 

  43. Douven, I.: Abduction. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Stanford (2021)

    Google Scholar 

  44. Viteri, S., DeDeo, S.: Epistemic phase transitions in mathematical proofs. Cognition 225, 105120 (2022)

    Article  Google Scholar 

  45. Carnap, R.: Logical Foundations of Probability. University of Chicago Press, Chicago (1950)

    Google Scholar 

  46. Burgess, J.P.: Probability logic. J. Symbol. Logic 34(2), 264–274 (1969)

    Article  Google Scholar 

  47. Hoover, D.N.: Probability logic. Ann. Math. Logic 14(3), 287–313 (1978)

    Article  MathSciNet  Google Scholar 

  48. Leblanc, H.: Probabilistic semantics for first-order logic. Math. Logic Q. 25(32), 497–509 (1979)

    Article  MathSciNet  Google Scholar 

  49. Hailperin, T., et al.: Probability logic. Notre Dame J. Formal Logic 25(3), 198–212 (1984)

    Article  MathSciNet  Google Scholar 

  50. Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28(1), 71–87 (1986)

    Article  MathSciNet  Google Scholar 

  51. Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities. Inf. Comput. 87(1–2), 78–128 (1990)

    Article  MathSciNet  Google Scholar 

  52. Leitgeb, H.: On the probabilistic convention T. Rev. Symbol. Log. 1(2), 218–224 (2008)

    MathSciNet  Google Scholar 

  53. Haenni, R., et al.: Probabilistic Logics and Probabilistic Networks, vol. 350. Springer, New York (2010)

    Google Scholar 

  54. Christiano, P.F., et al.: Definability of truth in probabilistic logic. In: Unpublished Manuscript (2013)

  55. Campbell-Moore, C.: How to express self-referential probability. Rev. Symbol. Logic 4, 680–704 (2015)

    Article  MathSciNet  Google Scholar 

  56. Demey, L., Kooi, B., Sack, J.: Logic and probability. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Stanford (2019)

    Google Scholar 

  57. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–136 (2006)

    Article  Google Scholar 

  58. Franklin, J.: Non-deductive logic in mathematics. Br. J. Philos. Sci. 38(1), 1–18 (1987)

    Article  Google Scholar 

  59. Belnap, N.D., Steel, T.B.: The Logic of Questions and Answers. Yale University Press, New Haven (1976)

    Google Scholar 

  60. Hintikka, J., Bachman, J.: What If...?: Toward Excellence in Reasoning. Mayfield, Mountain View (1991)

    Google Scholar 

  61. Wisniewski, A.: Questions, Inferences, and Scenarios. College Publications, Berlin (2013)

    Google Scholar 

  62. Hoek, D.: Questions in action. J. Philos. 119(3), 113–143 (2022)

    Article  Google Scholar 

  63. Garrabrant, S., et al.: A formal approach to the problem of logical non-omniscience. Preprint at http://arxiv.org/abs/1707.08747 (2017)

  64. Garrabrant, S., et al.: Logical induction. Preprint at http://arxiv.org/abs/1609.03543 (2016)

  65. Lample, G., Charton, F.: Deep learning for symbolic mathematics. Preprint at http://arxiv.org/abs/1912.01412 (2019)

  66. Vishwakarma, R., Mishra, S.: Enhancing neural theorem proving through data augmentation and dynamic sampling method. Preprint at http://arxiv.org/abs/2312.14188 (2023)

  67. Goodman, N., et al.: Church: a language for generative models. Preprint at http://arxiv.org/abs/1206.3255 (2012)

  68. Freer, C.E., Roy, D.M., Tenenbaum, J.B.: Towards common-sense reasoning via conditional simulation: legacies of turing in artificial intelligence. Turing’s Legacy 42, 195–252 (2014)

    Article  MathSciNet  Google Scholar 

  69. Icard, T.F.: Calibrating generative models: the probabilistic Chomsky-Schützenberger hierarchy. J. Math. Psychol. 95, 102308 (2020)

    Article  MathSciNet  Google Scholar 

  70. Chomsky, N., Schützenberger, M.P.: The algebraic theory of context-free languages. In: Chomsky, N., Schützenberger, M.P. (eds.) Studies in Logic and the Foundations of Mathematics, vol. 26, pp. 118–161. Elsevier, Hoboken (1959)

    Google Scholar 

  71. Lin, H.W., Tegmark, M.: Critical behavior in physics and probabilistic formal languages. Entropy 19(7), 299 (2017)

    Article  ADS  Google Scholar 

  72. Gisin, N.: Indeterminism in physics, classical chaos and Bohmian mechanics: are real numbers really real? Erkenntnis 1, 1–13 (2019)

    Google Scholar 

  73. Gisin, N.: Indeterminism in physics and intuitionistic mathematics. Synthese 199(5), 13345–13371 (2021)

    Article  MathSciNet  Google Scholar 

  74. Chen, E.K.: Nomic vagueness. Preprint at http://arxiv.org/abs/2006.05298 (2020)

  75. Wolpert, D.H.: Constraints on physical reality arising from a formalization of knowledge. Preprint at http://arxiv.org/abs/1711.03499 (2017)

  76. Wolpert, D.H.: The lack of a priori distinctions between learning algorithms. Neural Comput. 8(7), 1341–1390 (1996)

    Article  Google Scholar 

  77. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997)

    Article  Google Scholar 

  78. Wolpert, D.H.: The implications of the no-free-lunch theorems for meta-induction. J. Gen. Philos. Sci. 54, 421 (2021)

    Article  Google Scholar 

  79. Skipper, M., Bjerring, J.C.: Bayesianism for non-ideal agents. Erkenntnis 87, 1–23 (2020)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

D.H. is first author and D.K. is second author. Both authors worked on the writing and revising of the manuscript.

Corresponding author

Correspondence to David B. Kinney.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Carlo Rovelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Additional Facets of the SMS Framework

1.1 Claim Trajectories

Although it was not needed for the results or discussion in this paper, we can also use the SMS framework to assign probabilities to trajectories of claims produced at different steps of an SMS.

Definition 11.1

A claim vector trajectory \(\vec {C}^{n}\) is a map taking any \(i \in 1, \ldots , n\) to a claim vector if n is finite, and taking any \(i \in \mathbbm {Z}^+\) to a claim vector if \(n = \infty\).

As shorthand, if a claim vector trajectory contains only a single claim vector, then we will sometimes write that trajectory as that single claim vector. In the sequel the spaces \({\mathcal {Q}}\) and \({\mathcal {V}}\) will often be implicit. We will also cavalierly use |.| to indicate cardinality. So for example, |C| is the number of components of a claim vector C, \(|\hat{C}|\) is the number of elements in the claim set \(\hat{C}\), etc.

It will occasionally be useful to consider probability distributions concerning the event that the claim vector generated at the n-th step of a particular SMS contains the answer v in response to the question q. We present some definitions that will be useful when working with such distributions for the case where \({\mathcal {C}}\) is countable; their extensions to other spaces is straight-forward.

Definition 11.2

Suppose we are given an SMS \(\varphi =(\mathfrak {C},X)\) and a claim vector trajectory \(\vec {C}^{n-1} = (C^1, C^2, \ldots , C^{n-1})\) for some finite \(n > 1\). The associated question semi-distribution is the function mapping all \(q\in {{\mathcal {Q}}}\) to the value

$$\begin{aligned} P^n(q, \vec {C}^{n-1}) := \sum _{v^{\prime }\in {{\mathcal {V}}}} P_{\mathfrak {C}} \left( X(1)=C^{1},\dots , X(n-1) = C^{n-1}, (q, v') \in \hat{X}(n)\right) . \end{aligned}$$

\(P^n(q, \vec {C}^{n-1})\) is the joint probability that the question q occurs in a claim in the step-n claim vector and that the earlier claim vectors were \(C^1, C^2, \ldots , C^{n-1}\). Intuitively, one can think of this as the probability that a reasoner considers a particular question at step n and also outputs a particular set of claims at previous steps. Note that in general, for any fixed \(\vec {C}^{n-1}\), the associated question semi-distribution is not normalized when considered as a function of questions q.

We define claim semi-distributions \(P^n((q,v),\vec {C}^{n-1})\) analogously to question semi-distributions. We combine these definitions as follows:

Definition 11.3

For an SMS \(\varphi =(\mathfrak {C},X)\), question q, and claim vector trajectory \(\vec {C}^{n-1}\) where \(P^n(q, \vec {C}^{n-1}) \ne 0\), the associated response distribution is the map from all \(v\in {{\mathcal {V}}}\) to the value

$$\begin{aligned} P^n(v | q,\vec {C}^{n-1})=\frac{P^n((q, v), \vec {C}^{n-1})}{P^n(q, \vec {C}^{n-1})}. \end{aligned}$$

The response distribution for a given SMS \(\varphi\), question q, and claim vector trajectory \(\vec {C}^{n-1}\) specifies the probability that q is given an answer v in the n-th step of \(\varphi\), conditional on \(\varphi\) having produced the earlier claims specified in the partial claim vector trajectory \(\vec {C}^{n-1}\) and having produced some claim that includes the question q in the n-th claim vector.Footnote 17 This conditional character of the response probability distribution will be exploited below to represent path-dependent mathematical reasoning, in which the answers given by an SMS to questions earlier in the process of generating mathematical claims affect the answers given to questions posed later in the process.

1.2 An Alternative Distribution over Claim Sets

In the body of this paper, we considered the following distribution over claim sets:

$$\begin{aligned} P^{n}(\hat{C}):=\sum _{\{C\in {\mathcal {C}}^{*}:\hat{C}\subseteq U(C)\}}P_{\mathfrak {C}}(X(n)=C). \end{aligned}$$
(20)

This is the probability that an SMS outputs, at step n, a claim vector whose unordering is a superset of \(\hat{C}\). But we may also want to consider the probability that an SMS outputs, at a step n, a vector whose unordering simply is the claim set \(\hat{C}\). Such a distribution, which we denote \(\underline{P}^{n}(\hat{C})\), can be defined in the obvious way:

$$\begin{aligned} \underline{P}^{n}(\hat{C}):=\sum _{\{C\in {\mathcal {C}}^{*}:\hat{C}= U(C)\}}P_{\mathfrak {C}}(X(n)=C). \end{aligned}$$
(21)

We can then use this distribution to define a related question semi-distribution and response distribution:

$$\begin{aligned} \underline{P}^{n}((q,v),\hat{C}):= & {} \sum _{\{C\in {\mathcal {C}}^{*}:\hat{C}\cup \{(q,v)\}= U(C)\}}P_{\mathfrak {C}}(X(n)=C), \end{aligned}$$
(22)
$$\begin{aligned} \underline{P}^{n}(q,\hat{C}):= & {} \sum _{v\in {\mathcal {V}}}\underline{P}^{n}((q,v),\hat{C}), \end{aligned}$$
(23)
$$\begin{aligned} \underline{P}^{n}(v|q,\hat{C}):= & {} \frac{\underline{P}^{n}((q,v),\hat{C})}{\underline{P}^{n}(q,\hat{C})}. \end{aligned}$$
(24)

Finally, we can extend this distribution to apply to trajectories of claim sets, rather than claim vectors, e.g.:

$$\begin{aligned} \underline{P}^n(q,\vec {\hat{C}}^{n-1})&:= \sum _{\vec {C}^{n-1} : U(C^i) = \hat{C}^i \, \forall 1 \le i \le n-1} P^n(q,\vec {C}^{n-1}), \end{aligned}$$
(25)

where \(\vec {\hat{C}}^{n-1}\) is a trajectory of unordered claim sets \((\hat{C}^{1},\dots ,\hat{C}^{n-1})\).

Appendix 2: Proofs of Propositions

1.1 Proof of Lemma 3.3

Proof

Choose some SMS that is backward-consistent after step \(\kappa\), and some claim set \(\hat{C}\). For all steps \(j > \kappa\) and \(j> i > \kappa\),

$$\begin{aligned} P^j(\hat{C})&= \sum _{\hat{C}' : \hat{C} \subseteq \hat{C}'} {\underline{P}}^j(\hat{C}') \nonumber \\&= \sum _{{C}' : \hat{C} \subseteq U({C}')} P_{\mathfrak {C}} (X(j, .) = {C}') \nonumber \\&= \sum _{{C}' : \hat{C} \subseteq U(C')} \left[ \sum _{{C}'' : \hat{C} \subseteq U(C'')} P_{\mathfrak {C}} (X(j, .) = {C}', X(i, .) = {C}'')\right. \nonumber \\&\quad \left. + \sum _{{C}'' : \hat{C} \not \subseteq U(C'')} P_{\mathfrak {C}} (X(j, .) = {C}', X(i, .) = {C}'') \right] \nonumber \\&= \sum _{{C}' : \hat{C} \subseteq U(C')} \bigg [ \sum _{{C}'' : \hat{C} \subseteq U(C'')} P_{\mathfrak {C}} (X(j, .) = {C}' \, \vert \, X(i, .) = {C}'') P_{\mathfrak {C}} (X(i, .) = {C}'') \nonumber \\&\quad + \sum _{{C}'' : \hat{C} \not \subseteq U(C'')} P_{\mathfrak {C}} (X(j, .) = {C}', X(i, .) = {C}'') \bigg ]. \end{aligned}$$
(26)

Due to backward-consistency, \(U(C^{\prime \prime })\subseteq U(C^{\prime })\) and so if \(\hat{C}\subseteq U(C^{\prime \prime })\), then \(\hat{C}\subseteq U(C^{\prime })\). This means that for all \(C^{\prime \prime }\) such that \(\hat{C}\subseteq U(C^{\prime \prime })\),

$$\begin{aligned} P_{\mathfrak {C}}(X(j,.)\in \{C^{\prime }: \hat{C}\subseteq U(C^{\prime })\}|X(i,.)=U(C^{\prime \prime }))=1. \end{aligned}$$
(27)

Thus, the sum over \(C'\) of the conditional distribution in the summand in the last line equals 1, for all \(C''\) in the associated sum. Therefore we get

$$\begin{aligned} P^j(\hat{C})&= \sum _{{C}'' : \hat{C} \subseteq U(C'')} P_{\mathfrak {C}} (X(i, .) = {C}'')\nonumber \\&\quad + \sum _{{C}' : \hat{C} \subseteq U(C')} \sum _{{C}'' : \hat{C} \not \subseteq U(C'')} P_{\mathfrak {C}} (X(j, .) = {C}', X(i, .) = {C}'') \nonumber \\&= P^i(\hat{C}) + \sum _{{C}' : \hat{C} \subseteq U(C')} \sum _{{C}'' : \hat{C} \not \subseteq U(C'')} P_{\mathfrak {C}} (X(j, .) = {C}', X(i, .) = {C}'') \nonumber \\&\ge P^i(\hat{C}). \end{aligned}$$
(28)

So for any claim set \(\hat{C}\), \(P^j(\hat{C})\) is a monotonically increasing function of j. In addition, that probability is upper-bounded as one varies over all j, by 1. By the completeness axiom of the reals, that means it has a least upper bound. Therefore the limit of that probability goes to infinity is well-defined. Replacing j with m establishes the claim. \(\square\)

1.2 Proof of Proposition 6.2

Proof

The divergence function D in the definition of embed-calibrated can only equal 0 if its two arguments are identical. Therefore for all embedded prediction triples \((v, q, \hat{C})\), and \(v^m_1\),

$$\begin{aligned} \Psi (\psi (q), v)(v_1^m) = \overline{P}_1\left( v_1^m \;|\; \psi (q), E^{-1}[\{(q, v)\} \cup {\hat{C}}] \right) . \end{aligned}$$
(29)

Define

$$\begin{aligned} \hat{C}_2(v^m_1)&:= E \left[ \{(\psi (q), v^m_1)\} \cup E^{-1}[\{(q, v)\} \cup {\hat{C}}]\right] . \end{aligned}$$
(30)

Since \((q, \hat{C})\) is a discriminating pair,

$$\begin{aligned} E^{-1}(\hat{{C}}_2(v^m_1)) = \{(\psi (q), v^m_1)\} \cup E^{-1}[\{(q, v)\} \cup {\hat{C}}]. \end{aligned}$$
(31)

By the definition of embedding function, this means that

$$\begin{aligned} \overline{P}_{1} \left( \{(\psi (q), v^m_1)\} \cup E^{-1}[\{(q, v)\} \cup {\hat{C}}]\right)&= P^{n}_{2} \left( \hat{C}_2(v^m_1)\right) . \end{aligned}$$
(32)

Since this is true for all \(v^m_1\), it also is true when we sum over such \(v^m_1\). Therefore

$$\begin{aligned} \overline{P}_{1} \left( v^m_1 \,|\, \psi (q), E^{-1}[\{(q, v)\} \cup \hat{C}] \right)&= \frac{P^{n}_{2} (\hat{C}_2(v^m_1))}{\sum _{v^m_1} P^{n}_{2} (\hat{C}_2(v^m_1))}. \end{aligned}$$
(33)

(See discussion just below Definition 3.1.) This completes the proof. \(\square\)

1.3 Derivation of Definition 7.1

We begin with an alternative definition, that a collection of evidence paths \({\mathcal {B}}\) is a set of claim sets \(\{B(i)\}\) such that:

$$\begin{aligned}&\forall \, i \in \{2, \ldots , n\} \qquad \dfrac{P\left( B(1), \ldots , B(i) \,|\, (q, v^*), \beta \right) }{P\left( B(1), \ldots , B(i-1) \,|\, \beta , (q, v^*)\right) \times P\left( B(i) \,|\, \beta , (q, v^*)\right) } \nonumber \\&\quad \ge \dfrac{P\left( B(1), \ldots , B(i) \,|\, q, \beta \right) }{P\left( B(1), \ldots , B(i-1) \,|\, q, \beta ) \times P(B(i) \,|\, q, \beta \right) }. \end{aligned}$$
(34)

Intuitively speaking, Eq. (10) tells us that each B(i) is a line of evidence for the claim \((q, v^*)\), when considered in isolation of all the others. Equation (34) goes on to tell us that those different lines of evidence do not “work at cross-purposes”, thwarting one another. (The precise indexing of the n sets in \({\mathcal {B}}\) is not important, so long as we can find such an indexing for which Eq. (34) holds.)

To illustrate Eq. (34), suppose that B(1) and B(2) are two lines of reasoning that each establish for a given mathematician-SMS that (conditional on \(\beta\)) the answer to q is \(v^{*}\). However, suppose that both lines of reasoning depend on steps such that, if the answer to q did indeed turn out to be \(v^{*}\) rather than something else, it would imply to the mathematician-SMS that B(1) and B(2) are very unlikely to both be true. Thus, from the perspective of the mathematician-SMS, \(P\left( B(1), B(2) \,|\, (q, v^*), \beta \right) \ll P\left( B(1), B(2) \,|\, q, \beta \right)\). This is one way of formalizing the notion that B(1) and B(2) thwart one another, conditioned on the answer \(v^*\) in response to the question q (in addition to the foundational claim set \(\beta\)), but not if that answer is unspecified.

We still need to quantify the strength of that thwarting though. To see how to do this, suppose that although the supposition that q has the answer \(v^{*}\) might increase the mathematician-SMS’s degree of belief that B(1) is true, the overall effect is mild: \(P(B(1)|(q,v^{*}), \beta )\) is not much greater than \(P(B(1)|q,\beta )\). Suppose that similarly, \(P(B(2)|(q,v^{*}), \beta )\) is not much greater than \(P(B(2)|q,\beta )\). Under these conditions, Eq. (34) may not hold for B(1) and B(2), so that they are not both evidence paths for the claim \((q,v^{*})\). Intuitively, they thwart each other too much. Thus, enforcing Eq. (34) ensures that such thwarting does not occur.

If \({\mathcal {B}}\) is a collection of evidence paths, then not only is each B(i) a line of evidence for the answer \(v^*\) to the question q when considered in isolation, but furthermore, as we iteratively combine more and more of those evidence paths, we strictly increase the probability of the response \(v^*\) to the question q:

Proposition 12.1

Let \({\mathcal {B}}\) be a collection of N evidence paths for the claim \((q, v^*)\). Then for all \(i: N \ge i \ge 1\),

$$\begin{aligned} P(v^*\,|\, q, \beta , B(1), \ldots , B(i))&> P(v^*\,|\, q, \beta , B(1), \ldots , B(i-1)), \end{aligned}$$
(35)

(where we interpret the \(i=1\) version of this statement to mean \(P(v^*\,|\, q, \beta , B(1)) \ge P(v^*\,|\, q, \beta )\)).

Proof

Evaluating Eq. (10) for \(i = 1\) directly establishes the \(i=1\) version of Eq. (11):

$$\begin{aligned} P(v^*\,|\, q, \beta , B(1)) \;>\; P(v^*\,|\, q, \beta ). \end{aligned}$$

Next, for any \(i: 2 \le i \le n\), we can use Bayes’ theorem to expand

$$\begin{aligned}&\dfrac{P(v^*\,|\, q, \beta , B(1), \ldots , B(i))}{P(v^*\,|\, q, \beta , B(1), \ldots , B(i-1))} \nonumber \\&\quad = \dfrac{P(v^*\,|\, q, {\beta , B(i))}}{P(v^*\,|\, q, {\beta })} \nonumber \\&\qquad \times \dfrac{P({B(i)} \,|\, q, {\beta }) \times P({B(1), \ldots , B(i-1)} \,|\, q, {\beta })}{P({B(1), \ldots , B(i)} \,|\, q, {\beta })} \nonumber \\&\qquad \times \dfrac{P({B(1), \ldots , B(i)} \,|\, (q, v^*), {\beta })}{P({B(i)} \,|\, (q, v^*), {\beta }) \times P({B(1), \ldots , B(i-1)} \,|\, (q, v^*), {\beta })}. \end{aligned}$$
(36)

Using Eq. (10) again establishes that the first term on the RHS of Eq. (36) is \(> 1\). Equation (34) establishes that the product of the second and third terms on the RHS is also \(> 1\). Therefore the entire RHS of Eq. (36) is \(> 1\). This establishes the claim. \(\square\)

So this alternative definition of an evidence path implies the one we adopted in the main text.

1.4 Proof of Proposition 7.3

Proof

By hypothesis, \(\varphi _2\) is calibrated with the community-SMS \(\varphi _1\) at step n for any \(\hat{C}_{2}\subseteq \beta \cup \bigcup _i B(i)\). So for all \(1 \le i \le n\),

$$\begin{aligned}&\sum _{v\in {\mathcal {V}}_{2}}P^{n}_{2}(v|q,\beta , B(1), \ldots , B(i))D[ \Psi (\psi (q),v)({\mathcal {V}}_{1}), \nonumber \\\;&\quad \overline{P}_1\left( {\mathcal {V}}_1 \;|\; \psi (q), \beta , B(1), \ldots , B(i) \right)] \le \epsilon. \end{aligned}$$
(37)

The convexity of D[., .] over its first argument then establishes

$$D\left[ \sum _{v\in {\mathcal {V}}_{2}}P^{n}_{2}(v|q,\beta , B(1), \ldots , B(i))\Psi (\psi (q),v)({\mathcal {V}}_{1}), \;\overline{P}_1( {\mathcal {V}}_1 \;|\; \psi (q), \beta , B(1), \ldots , B(i)) \right] \le \epsilon$$
(38)

i.e.,

$$\begin{aligned} D\left[ F^n({\mathcal {V}}_1 \,|\, \psi (q), {\beta , B(1), \ldots , B(i)}), \; \overline{P}_1\left( {\mathcal {V}}_1 \;|\; \psi (q), {\beta , B(1), \ldots , B(i)} \right) \right]&\le \epsilon . \end{aligned}$$
(39)

Next, since all of the B(i) are evidence paths for \((\psi (q), v^*)\) under the distribution \(F^n\) and conditioned on \(\beta\), by Eq. (11), for all \(1 \le i \le N\),

$$\begin{aligned} F^n(v^*\,|\, \psi (q), {\beta , B(1), \ldots , B(i)})&> F^n(v^*\,|\, \psi (q), {\beta , B(1), \ldots , B(i-1)}). \end{aligned}$$
(40)

Finally, by hypothesis D[., .] is a locally Lipschitz continuous function of its probability distribution arguments (where those distributions are considered as vectors in a Euclidean metric space) when evaluated for the distributions specified in  Eqs. (39) and (40). Then since a divergence equals zero only if its arguments are identical, for all \(1 \le i \le n\), for small enough \(\epsilon\),

$$\begin{aligned} \overline{P}_1(v^*\,|\, \psi (q), {\beta , B(1), \ldots , B(i)})&> \overline{P}_1(v^*\,|\, \psi (q), {\beta , B(1), \ldots , B(i-1)}), \end{aligned}$$
(41)

as claimed. \(\square\)

1.5 Proof of Proposition 7.4

Proof

By hypothesis \(\varphi _2\) is embed-calibrated with the universe-SMS \(\varphi _1\) at step n for any \(\hat{C}_{2}\subseteq \beta \cup \bigcup _i B(i)\). So for all \(1 \le i \le n\),

$$\begin{aligned}{} & {} \sum _{v\in {\mathcal {V}}_{2}}P^{n}_{2}(v|q,\beta , B(1), \ldots , B(i))D\Big [\Psi (\psi (q),v)({\mathcal {V}}_{1}), \; \nonumber \\{} & {} \quad \overline{P}_1\left( {\mathcal {V}}_1 \;|\; \psi (q), E^{-1}[\{(q,v)\}\cup \beta , B(1), \ldots , B(i)] \right) \Big ] \le \epsilon . \end{aligned}$$
(42)

The convexity of D[., .] then establishes

$$\begin{aligned}{} & {} D\Big [\sum _{v\in {\mathcal {V}}_{2}}P^{n}_{2}(v|q,\beta , B(1), \ldots , B(i))\Psi (\psi (q),v)({\mathcal {V}}_{1}), \;\nonumber \\{} & {} \quad \sum _{v\in {\mathcal {V}}_{2}}P^{n}_{2}(v|q,\beta , B(1), \ldots , B(i))\overline{P}_1\left( {\mathcal {V}}_1 \;|\; \psi (q), E^{-1}[\{(q,v)\}\cup \beta , B(1), \ldots , B(i)] \right) \Big ] \le \epsilon , \end{aligned}$$
(43)

i.e.,

$$\begin{aligned}{} & {} D\Big [F^{n}_{2}(v|q,\beta , B(1), \ldots , B(i)), \; \nonumber \\{} & {} \quad \sum _{v\in {\mathcal {V}}_{2}}P^{n}_{2}(v|q,\beta , B(1), \ldots , B(i))\overline{P}_1\left( {\mathcal {V}}_1 \;|\; \psi (q), E^{-1}[\{(q,v)\}\cup \beta , B(1), \ldots , B(i)] \right) \Big ] \le \epsilon . \end{aligned}$$
(44)

Next, since all of the B(i) are evidence paths for \((\psi (q), v^*)\) under the distribution \(F^n\) and conditioned on \(\beta\), by Eq. (11), for all \(1 \le i \le N\),

$$\begin{aligned} F^n(v^*\,|\, \psi (q), {\beta , B(1), \ldots , B(i)})&> F^n(v^*\,|\, \psi (q), {\beta , B(1), \ldots , B(i-1)}). \end{aligned}$$
(45)

Finally, by hypothesis D[., .] is a locally Lipschitz continuous function of its probability distribution arguments (where those distributions are considered as vectors in a Euclidean metric space) when evaluated for the distributions specified in  Eqs. (44) and (45). Then since a divergence equals zero only if its arguments are identical, for all \(1 \le i \le n\), for small enough \(\epsilon\),

$$\begin{aligned}{} & {} \sum _{v\in {\mathcal {V}}_{2}}P^{n}_{2}(v|q,\beta , B(1), \ldots , B(i))\overline{P}_1(v^*\,|\, \psi (q), E^{-1}[\{(q,v)\}\cup \beta , B(1), \ldots , B(i)) \nonumber \\{} & {} \quad > \ \sum _{v\in {\mathcal {V}}_{2}}P^{n}_{2}(v|q,\beta , B(1), \ldots , B(i-1))\overline{P}_1(v^*\,|\, \psi (q), E^{-1}[\{(q,v)\}\cup \beta , B(1), \ldots , B(i-1)]), \end{aligned}$$
(46)

as claimed. \(\square\)

1.6 Proof of Proposition 7.5

Proof

By hypothesis, \((q, E[\hat{C}_1])\) is an embedding prediction pair for step n for any claim set \(\hat{C}_{1}\subseteq \beta \cup \bigcup _i B(i)\). By hypothesis it is also true that \(\varphi _2\) is embed-calibrated with SMS \(\varphi _1\) at step n for the prediction pair \((q, E[\hat{C}_1])\) for any such \(\hat{C}_1\). So for all \(1 \le i \le n\),

$$\begin{aligned}{} & {} \sum _{v\in {\mathcal {V}}_{2}}P^{n}_{2}(v|q,E[\beta , B(1), \ldots , B(i)])D\Big [\Psi (\psi (q),v)({\mathcal {V}}_{1}), \nonumber \\{} & {} \quad \overline{P}_1\left( {\mathcal {V}}_1 \;|\; \psi (q), E^{-1}[\{(q,v)\}\cup E[\beta , B(1), \ldots , B(i)]] \right) \Big ] \le \epsilon . \end{aligned}$$
(47)

Due to the convexity of D[., .], this means that

$$\begin{aligned}{} & {} D\Big [\sum _{v\in {\mathcal {V}}_{2}}P^{n}_{2}(v|q,E[\beta , B(1), \ldots , B(i)])\Psi (\psi (q),v)({\mathcal {V}}_{1}), \nonumber \\{} & {} \quad \sum _{v\in {\mathcal {V}}_{2}}P^{n}_{2}(v|q,E[\beta , B(1), \ldots , B(i)])\overline{P}_1\left( {\mathcal {V}}_1 \;|\; \psi (q), E^{-1}[\{(q,v)\}\cup E[\beta , B(1), \ldots , B(i)]] \right) \Big ]\le \epsilon , \end{aligned}$$
(48)

or

$$\begin{aligned}{} & {} D\Big [F^n({\mathcal {V}}_1 \,|\, \psi (q), E[\beta , B(1), \ldots , B(i)]), \nonumber \\{} & {} \quad \sum _{v\in {\mathcal {V}}_{2}}P^{n}_{2}(v|q,E[\beta , B(1), \ldots , B(i)])\overline{P}_1\left( {\mathcal {V}}_1 \;|\; \psi (q), E^{-1}[\{(q,v)\}\cup E[\beta , B(1), \ldots , B(i)]] \right) \Big ]\le \epsilon . \end{aligned}$$
(49)

The same line of reasoning for \(E[\beta , B(1), \ldots , B(i-1)]\) yields:

$$\begin{aligned}{} & {} D\Big [F^n({\mathcal {V}}_1 \,|\, \psi (q), E[\beta , B(1), \ldots , B(i-1)]), \nonumber \\{} & {} \quad \sum _{v\in {\mathcal {V}}_{2}}P^{n}_{2}(v|q,E[\beta , B(1), \ldots , B(i-1)])\overline{P}_1\left( {\mathcal {V}}_1 \;|\; \psi (q), E^{-1}[\{(q,v)\}\cup E[\beta , B(1), \ldots , B(i-1)]] \right) \Big ] \le \epsilon . \end{aligned}$$
(50)

Since, by hypothesis, all of the B(i) are evidence paths for \((\psi (q), v^*)\) under the distribution \(\overline{P}_{1}\) and conditioned on \(\beta\), for all \(1 \le i \le N\), Eq. (11) allows us to write

$$\begin{aligned} \overline{P}_1(v^*\,|\, \psi (q), \beta , B(1), \ldots , B(i)) \;>\; \overline{P}_1(v^*\,|\, \psi (q), \beta , B(1), \ldots , B(i-1)). \end{aligned}$$
(51)

Via the fifth condition of the proposition, this implies that

$$\begin{aligned}{} & {} \overline{P}_1\left( v^{*} \;|\; \psi (q), E^{-1}[\{(q,v)\}\cup E[\beta , B(1), \ldots , B(i)]] \right) \nonumber \\{} & {} \quad > \overline{P}_1\left( v^{*} \;|\; \psi (q), E^{-1}[\{(q,v)\}\cup E[\beta , B(1), \ldots , B(i-1)]] \right) , \end{aligned}$$
(52)

for all \(v\in {\mathcal {V}}_{2}\). By hypothesis D[., .] is a locally Lipschitz continuous function of its probability distribution arguments (where those distributions are considered as vectors in a Euclidean metric space) when evaluated for the distributions specified in  Eqs. (49) to (51). Then since a divergence equals zero only if its arguments are identical, for all \(1 \le i \le n\), for small enough \(\epsilon\),

$$\begin{aligned}{} & {} F^n({\mathcal {V}}_1 \,|\, \psi (q), E[\beta , B(1), \ldots , B(i)])\nonumber \\{} & {} \quad >F^n({\mathcal {V}}_1 \,|\, \psi (q), E[\beta , B(1), \ldots , B(i-1)]), \end{aligned}$$
(53)

as claimed. \(\square\)

1.7 Proof of Proposition 8.1

Proof

By hypothesis, \({F^{n}}\) satisfies the abductive premise,

$$\begin{aligned} { {F^{n}}(v^*\;|\; q^*, (q^\dagger , v^\dagger ),\hat{C}_{2}) = \alpha {F^{n}}(v^*\;|\; q^*, \hat{C}_{2}), }\end{aligned}$$
(54)

which means the abduction implication must hold,

$$\begin{aligned} {F^{n}}(v^\dagger \;|\; q^\dagger , (q^*, v^*),\hat{C}_{2}) = \alpha {F^{n}}(v^\dagger \;|\; q^\dagger ,\hat{C}_{2}). \end{aligned}$$
(55)

Since hypothesis \(F^{n}_{2}(v^*\,|\, q^*, q^\dagger , \hat{C}_{2}):= \sum _{v^\dagger } F^{n}_{2}(v^*, v^\dagger \,|\, q^*, q^\dagger , \hat{C}_{2}) = F^{n}_{2}(v^*\,|\, q^*, \hat{C}_{2})\), Eq. (55) implies

$$\begin{aligned} {F^{n}}(v^*, v^\dagger \;|\; q^*, q^\dagger , \hat{C}_{2} ) = \alpha {F^{n}}(v^\dagger \;|\; q^\dagger , \hat{C}_{2}) {F^{n}}(v^*\;|\; q^*, \hat{C}_{2}). \end{aligned}$$
(56)

Also by hypothesis, \(\varphi _2\) is calibrated with \(\varphi _{1}\) at step n for \(\hat{C}_{2}\), for each of the three questions \(\psi ^{-1}(q^{*})\), \(\psi ^{-1}(q^{\dagger })\), and \(\psi ^{-1}(q^{*},q^{\dagger })\), and for \(m=1,2\). Then choosing \(m=2\), we get

$$\begin{aligned}&\sum _{v\in {\mathcal {V}}_2}P^{n}_{2}(v|\psi ^{-1}(q^{*},q^{\dagger }),\hat{C}_{2})D\left[ \Psi (\psi (\psi ^{-1}(q^{*},q^{\dagger })),v)({\mathcal {V}}_{1},{\mathcal {V}}_{1}), \overline{P}_1\left( {\mathcal {V}}_{1}, {\mathcal {V}}_{1} \,|\, q^*, q^\dagger , \hat{C}_{2}\right) \right] \le \epsilon . \end{aligned}$$
(57)

The convexity of D[., .] establishes

$$\begin{aligned} D\left[ \sum _{v\in {\mathcal {V}}_2}P^{n}_{2}(v|\psi ^{-1}(q^{*},q^{\dagger }), \hat{C})\Psi (\psi (\psi ^{-1}(q^{*},q^{\dagger })),v)({\mathcal {V}}_{1},{\mathcal {V}}_{1}), \; \overline{P}_1\left( {\mathcal {V}}_{1}, {\mathcal {V}}_{1} \,|\, q^*, q^\dagger , \hat{C}_{2}\right) \right] \le \epsilon , \end{aligned}$$
(58)

or

$$\begin{aligned}&D\left[ {F^{n}}({\mathcal {V}}_{1},{\mathcal {V}}_{1} \,|\, q^*, q^\dagger ,\hat{C}_{2}),\overline{P}_1\left( {\mathcal {V}}_{1}, {\mathcal {V}}_{1} \,|\, q^*, q^\dagger , \hat{C}_{2}\right) \right] \le \epsilon , \end{aligned}$$
(59)

where with abuse of notation we write \(\overline{P}_1\left( {\mathcal {V}}_{1}, {\mathcal {V}}_{1} \,|\, q^*, q^\dagger , \hat{C}_{2}\right)\) for a fixed value of the triple \((q^*, q^\dagger , \hat{C}_{2})\) for the associated distribution over an event space \({\mathcal {V}}_{1} \times {\mathcal {V}}_{1}\).

Go through the analogous reasoning for \(m=1\) twice, once for each of the two distinct questions \(q' \ne q, q'' \ne q\) that we assume exist, questions which (via \(\psi (.)\)) specify the single question \(q^*\) and the single question \(q^\dagger\), respectively. In these two cases calibration means that:

$$\begin{aligned}&D\left[ {F^{n}}({\mathcal {V}}_{1} \,|\, q^*,\hat{C}_{2}), \; \overline{P}_1 \left( {\mathcal {V}}_{1} \,|\, q^*, \hat{C}_{2}\right) \right] \le \epsilon , \end{aligned}$$
(60)
$$\begin{aligned}&D\left[ {F^{n}}({\mathcal {V}}_{1} \,|\, q^\dagger ,\hat{C}_{2}), \; \overline{P}_1 \left( {\mathcal {V}}_{1} \,|\, q^\dagger , \hat{C}_{2}\right) \right] \le \epsilon , \end{aligned}$$
(61)

(where we have extended the definition of \({F^{n}}\) in the obvious way to the case where it has one claim as an argument rather than two).

By hypothesis, D[., .] is a locally Lipschitz continuous function of its probability distribution arguments (where those distributions are considered as vectors in a Euclidean metric space) when evaluated for the distributions specified in  Eqs. (59) to  (61). Then since a divergence equals zero only if its arguments are identical, for small \(\epsilon\) Eq. (59) implies:

$$\begin{aligned} \overline{P}_1\left( v^*, v^\dagger \,|\, q^*, q^\dagger , \hat{C}_{2}\right)&\simeq {F^{n}}(v^*, v^\dagger \,|\, q^*, q^\dagger ,\hat{C}_{2}) \nonumber \\&= \alpha {F^{n}}(v^\dagger \;|\; q^\dagger ,\hat{C}_{2}) P(v^*\;|\; q^*, \hat{C}_{2}). \end{aligned}$$
(62)

Equation (60) implies:

$$\begin{aligned} \overline{P}_1\left( v^*\,|\, q^*,\hat{C}_{2}\right)&\simeq {F^{n}}(v^*\,|\, q^*,\hat{C}_{2}), \end{aligned}$$
(63)

and Eq. (61) implies:

$$\begin{aligned} \overline{P}_1\left( v^\dagger \,|\, q^\dagger ,\hat{C}_{2}\right)&\simeq {F^{n}}(v^\dagger \,|\, q^\dagger , \hat{C}_{2}). \end{aligned}$$
(64)

Together, Eqs. (62) through  (64) imply:

$$\begin{aligned} \overline{P}_1\left( v^*, v^\dagger \,|\, q^*, q^\dagger , \hat{C}_{2}\right)&\simeq \alpha \overline{P}_1 \left( v^*\,|\, q^*, \hat{C}_{2}\right) \overline{P}_1 \left( v^\dagger \,|\, q^\dagger , \hat{C}_{2}\right) . \end{aligned}$$
(65)

By hypothesis,

$$\begin{aligned} \overline{P}_1 \left( v^*\,|\, q^*, q^\dagger , \hat{C}_{2}\right)&= \overline{P}_1 \left( v^*\,|\, q^*, \hat{C}_{2}\right) \end{aligned}$$
(66)

and so Eq. (65) implies that

$$\begin{aligned} \overline{P}_{1}(v^{\dagger }|q^{\dagger },(q^{*},v^{*}), \hat{C}_{2})\simeq \alpha \overline{P}_{1}(v^{\dagger }|q^{\dagger }, \hat{C}_{2})>\overline{P}_{1}(v^{\dagger }|q^{\dagger }, \hat{C}_{2}), \end{aligned}$$
(67)

as claimed. \(\square\)

1.8 Proof of Proposition 8.2

Proof

By hypothesis, \({F^{n}}\) satisfies the abductive premise. Following the same steps as at the beginning of the proof of Proposition 8.1, we get

$$\begin{aligned} {F^{n}}(v^*, v^\dagger \;|\; q^*, q^\dagger , \hat{C}_{2} ) = \alpha {F^{n}}(v^\dagger \;|\; q^\dagger , \hat{C}_{2}) {F^{n}}(v^*\;|\; q^*, \hat{C}_{2}). \end{aligned}$$
(68)

By hypothesis, \(\varphi _{2}\) is embed-calibrated with \(\varphi _{1}\) for \(\hat{C}_{2}\) for each of the three questions \(\psi ^{-1}(q^*)\), \(\psi ^{-1}(q^\dagger )\), and \(\psi ^{-1}(q^*,q^\dagger )\), and for \(m=1,2\). Then choosing \(m=2\), we get

$$\begin{aligned}{} & {} \sum _{v\in {\mathcal {V}}_2}P^{n}_{2}(v|\psi ^{-1}(q^{*},q^{\dagger }),\hat{C}_{2}])D\Big [ \Psi (\psi (\psi ^{-1}(q^{*},q^{\dagger })),v)({\mathcal {V}}_{1},{\mathcal {V}}_{1})\overline{P}_1\left( {\mathcal {V}}_{1}, {\mathcal {V}}_{1} \,|\, q^*, q^\dagger , E^{-1}[\{(\psi ^{-1}(q^{*},q^{\dagger }),v)\}\cup \hat{C}_{2}]]\right) \Big ]\le \epsilon . \end{aligned}$$
(69)

The convexity of D[., .] establishes

$$\begin{aligned}{} & {} D\Big [{F^{n}}({\mathcal {V}}_{1}|\psi ^{-1}(q^{*},q^{\dagger }),\hat{C}_{2}]),\sum _{v\in {\mathcal {V}}_2}P^{n}_{2}(v|\psi ^{-1}(q^{*},q^{\dagger }),\hat{C}_{2}])\overline{P}_1\left( {\mathcal {V}}_{1}, {\mathcal {V}}_{1} \,|\, q^*, q^\dagger , E^{-1}[\{(\psi ^{-1}(q^{*},q^{\dagger }),v)\}\cup \hat{C}_{2}]]\right) \Big ]\le \epsilon . \end{aligned}$$
(70)

Go through the analogous reasoning for \(m=1\) twice, once for each of the two distinct questions \(q' \ne q, q'' \ne q\) that we assume exist, questions which (via \(\psi (.)\)) specify the single question \(q^*\) and the single question \(q^\dagger\), respectively. In these two cases calibration means that:

$$D\left[ {F^{n}}({\mathcal {V}}_{1} \,|\, q^*,\hat{C}_{2}), \; \sum _{v\in {\mathcal {V}}_2}P^{n}_{2}(v|\psi ^{-1}(q^{*}),\hat{C}_{2})\overline{P}_1\left( {\mathcal {V}}_{1} \,|\, q^*, E^{-1}[\{(\psi ^{-1}(q^*),v)\}\cup \hat{C}_{2}]\right) \right] \le \epsilon$$
(71)
$$D\left[ {F^{n}}({\mathcal {V}}_{1} \,|\, q^\dagger ,\hat{C}_{2}), \; \sum _{v\in {\mathcal {V}}_2}P^{n}_{2}(v|\psi ^{-1}(q^{\dagger }),\hat{C}_{2})\overline{P}_1\left( {\mathcal {V}}_{1} \,|\, q^\dagger , E^{-1}[\{(\psi ^{-1}(q^\dagger ),v)\}\cup \hat{C}_{2}]\right) \right] \le \epsilon$$
(72)

(where we have extended the definition of \({F^{n}}\) in the obvious way to the case where it has one claim as an argument rather than two).

By hypothesis, D[., .] is a locally Lipschitz continuous function of its probability distribution arguments (where those distributions are considered as vectors in a Euclidean metric space) when evaluated for the distributions specified in  Eqs. (70) to (72). Then since a divergence equals zero only if its arguments are identical, for small \(\epsilon\) Eq. (70) implies:

$$\begin{aligned}{} & {} {F^{n}}(v^*,v^\dagger |\psi ^{-1}(q^{*},q^{\dagger }),\hat{C}_{2}) \nonumber \\{} & {} \quad ={F^{n}}(v^\dagger \;|\; q^\dagger , \hat{C}_{2}) {F^{n}}(v^*\;|\; q^*, \hat{C}_{2}) \nonumber \\{} & {} \quad \simeq \sum _{v\in {\mathcal {V}}_2}P^{n}_{2}(v|\psi ^{-1}(q^{*},q^{\dagger }),\hat{C}_{2})\overline{P}_1\nonumber \\{} & {} \qquad \times \left( v^*,v^\dagger \,|\, q^*, q^\dagger , E^{-1}[\{(\psi ^{-1}(q^{*},q^{\dagger }),v)\}\cup \hat{C}_{2}]\right) . \end{aligned}$$
(73)

Equation (71) implies:

$$\begin{aligned} {F^{n}}(v^*\,|\, q^*,\hat{C}_{2})&\simeq \sum _{v\in {\mathcal {V}}_2}P^{n}_{2}(v|\psi ^{-1}(q^{*}),\hat{C}_{2})\overline{P}_1 \left( v^*\,|\, q^*, E^{-1}[\{(\psi ^{-1}(q^*),v)\}\cup \hat{C}_{2}]\right) , \end{aligned}$$
(74)

and Eq. (72) implies:

$$\begin{aligned} {F^{n}}(v^\dagger \,|\, q^\dagger ,\hat{C}_{2})&\simeq \sum _{v\in {\mathcal {V}}_2}P^{n}_{2}(v|\psi ^{-1}(q^{\dagger }),\hat{C}_{2})\overline{P}_1 \left( v^\dagger \,|\, q^\dagger , E^{-1}[\{(\psi ^{-1}(q^\dagger ),v)\}\cup \hat{C}_{2}]\right) . \end{aligned}$$
(75)

Together, Eqs. (73) through  (75) imply:

$$\begin{aligned}{} & {} \sum _{v\in {\mathcal {V}}_2}P^{n}_{2}(v|\psi ^{-1}(q^{*},q^{\dagger }), \hat{C}_{2})\overline{P}_1\left( v^*,v^\dagger \,|\, q^*, q^\dagger , E^{-1}[\{(\psi ^{-1}(q^{*},q^{\dagger }),v)\}\cup \hat{C}_{2}]\right) \nonumber \\{} & {} \quad \simeq \ \alpha \sum _{v\in {\mathcal {V}}_2}P^{n}_{2}(v|\psi ^{-1}(q^{*}),\hat{C}_{2})\overline{P}_1 \left( v^*\,|\, q^*, E^{-1}[\{(\psi ^{-1}(q^*),v)\}\cup \hat{C}_{2}\right) \nonumber \\{} & {} \qquad \times \ \sum _{v\in {\mathcal {V}}_2}P^{n}_{2}(v|\psi ^{-1}(q^{\dagger }),\hat{C}_{2})\overline{P}_1 \left( v^\dagger \,|\, q^\dagger , E^{-1}[\{(\psi ^{-1}(q^\dagger ),v)\}\cup \hat{C}_{2}]\right) . \end{aligned}$$
(76)

By hypothesis, for all \(v\in {\mathcal {V}}_{2}\),

$$\begin{aligned}{} & {} \overline{P}_1 \left( v^*\,|\, q^*, q^{\dagger }, E^{-1}[\{(\psi ^{-1}(q^*,q^\dagger ),v)\}\cup \hat{C}_{2}]\right) =\overline{P}_1 \left( v^*\,|\, q^*, E^{-1}[\{(\psi ^{-1}(q^*),v)\}\cup \hat{C}_{2}]\right) , \end{aligned}$$
(77)

and so Eq. (76) implies that

$$\begin{aligned}{} & {} \sum _{v\in {\mathcal {V}}_{2}}P^{n}_{2}(v|\psi ^{-1}(q^{\dagger }),(q^{*},v^{*}), \hat{C}_{2})\overline{P}_{1}(v^{\dagger }|q^{\dagger },(q^{*},v^{*}), E^{-1}[\{(\psi ^{-1}(q^{\dagger }),v)]\}\cup \hat{C}_{2}]) \nonumber \\{} & {} \quad > \sum _{v\in {\mathcal {V}}_{2}}P^{n}_{2}(v|\psi ^{-1}(q^{\dagger }), \hat{C}_{2})\overline{P}_{1}(v^{\dagger }|q^{\dagger }, E^{-1}[\{\psi ^{-1}(q^{\dagger }),v)\}\cup \hat{C}_{2}]), \end{aligned}$$
(78)

as claimed. \(\square\)

1.9 Proof of Proposition 8.3

Proof

By hypothesis, \(\overline{P}_{1}\) satisfies the abductive premise for any \(\hat{C}_{1}\in {\hat {\mathcal{C}}}_{1}\), meaning that for any \(v\in {\mathcal {V}}_{2}\),

$$\begin{aligned}&\overline{P}_1\left( v^*\,|\, q^*, (q^\dagger ,v^{\dagger }), E^{-1}[\{(\psi ^{-1}(q^{*},q^{\dagger }),v)\}\cup E[\hat{C}_{1}]]\right) \nonumber \\&\quad = \alpha \overline{P}_1 \left( v^*\,|\, q^*, E^{-1}[\{(\psi ^{-1}(q^*),v)\}\cup E[\hat{C}_{1}]]\right) , \end{aligned}$$
(79)

which allows us to derive

$$\begin{aligned}&\overline{P}_1\left( v^\dagger \,|\, q^\dagger , (q^*,v^{*}), E^{-1}[\{(\psi ^{-1}(q^{*},q^{\dagger }),v)\}\cup E[\hat{C}_{1}]]\right) \nonumber \\&\quad = \alpha \overline{P}_1 \left( v^\dagger \,|\, q^\dagger , E^{-1}[\{(\psi ^{-1}(q^\dagger ),v)\}\cup E[\hat{C}_{1}]]\right) . \end{aligned}$$
(80)

Since, also by hypothesis,

$$\begin{aligned}&\overline{P}_{1}\left( v^*\,|\, q^*, q^\dagger , E^{-1}[\{(\psi ^{-1}(q^{*},q^{\dagger }),v)\}\cup E[\hat{C}_{1}]]\right) \nonumber \\&\quad = \overline{P}_{1} \left( v^*\,|\, q^*, E^{-1}[\{(\psi ^{-1}(q^\dagger ),v)\}\cup E[\hat{C}_{1}]]\right) , \end{aligned}$$
(81)

we are able to rewrite Eq. (80) as

$$\begin{aligned}{} & {} \overline{P}_1\left( v^\dagger , v^*\,|\, q^\dagger , q^*, E^{-1}[\{(\psi ^{-1}(q^{*},q^{\dagger }),v)\}\cup E[\hat{C}_{1}]]\right) \nonumber \\{} & {} \quad = \alpha \overline{P}_1 \left( v^\dagger \,|\, q^\dagger , E^{-1}[\{(\psi ^{-1}(q^\dagger ),v)\}\cup E[\hat{C}_{1}]\right) \overline{P}_1 \nonumber \\{} & {} \qquad \times \left( v^*\,|\, q^*, E^{-1}[\{(\psi ^{-1}(q^*),v)\}\cup E[\hat{C}_{1}]]\right) . \end{aligned}$$
(82)

By hypothesis, \(\varphi _{2}\) is embed-calibrated with \(\varphi _{1}\) for \(E[\hat{C}_{1}]\) for each of the three questions \(\psi ^{-1}(q^*)\), \(\psi ^{-1}(q^\dagger )\), and \(\psi ^{-1}(q^*,q^\dagger )\), and for \(m=1,2\). Then choosing \(m=2\) and applying Eq. (82), we get

$$\begin{aligned}{} & {} \sum _{v\in {\mathcal {V}}_2}P^{n}_{2}(v|\psi ^{-1}(q^{*},q^{\dagger }),E[\hat{C}_{1}])D\Big [ \Psi (\psi (\psi ^{-1}(q^{*},q^{\dagger })),v)({\mathcal {V}}_{1},{\mathcal {V}}_{1}), \nonumber \\{} & {} \quad \overline{P}_1\left( {\mathcal {V}}_{1}, {\mathcal {V}}_{1} \,|\, q^*, q^\dagger , E^{-1}[\{(\psi ^{-1}(q^{*},q^{\dagger }),v)\}\cup E[\hat{C}_{1}]]\right) \Big ]\le \epsilon . \end{aligned}$$
(83)

The convexity of D[., .] establishes

$$\begin{aligned}{} & {} D\Big [{F^{n}}({\mathcal {V}}_{1},{\mathcal {V}}_{1}|\psi ^{-1}(q^{*},q^{\dagger }),E[\hat{C}_{1}]), \nonumber \\{} & {} \quad \sum _{v\in {\mathcal {V}}_2}P^{n}_{2}(v|\psi ^{-1}(q^{*},q^{\dagger }),E[\hat{C}_{1}]) \overline{P}_1\nonumber \\{} & {} \quad \left( {\mathcal {V}}_{1}, {\mathcal {V}}_{1} \,|\, q^*, q^\dagger , E^{-1}[\{(\psi ^{-1}(q^{*},q^{\dagger }),v)\}\cup E[\hat{C}_{1}]]\right) \Big ] \le \epsilon . \end{aligned}$$
(84)

Go through the analogous reasoning for \(m=1\) twice, once for each of the two distinct questions \(q' \ne q, q'' \ne q\) that we assume exist, questions which (via \(\psi (.)\)) specify the single question \(q^*\) and the single question \(q^\dagger\), respectively. In these two cases calibration means that:

$$D\left[ {F^{n}}({\mathcal {V}}_{1} \,|\, q^*,E[\hat{C}_{1}]), \; \sum _{v\in {\mathcal {V}}_2}P^{n}_{2}(v|\psi ^{-1}(q^{*}),E[\hat{C}_{1}])\overline{P}_1\left( {\mathcal {V}}_{1} \,|\, q^*, E^{-1}[\{(\psi ^{-1}(q^*),v)\}\cup E[\hat{C}_{1}]]\right) \right] \le \epsilon ,$$
(85)
$$D\left[ {F^{n}}({\mathcal {V}}_{1} \,|\, q^\dagger ,E[\hat{C}_{1}]), \; \sum _{v\in {\mathcal {V}}_2}P^{n}_{2}(v|\psi ^{-1}(q^{\dagger }),E[\hat{C}_{1}])\overline{P}_1\left( {\mathcal {V}}_{1} \,|\, q^\dagger , E^{-1}[\{(\psi ^{-1}(q^\dagger ),v)\}\cup E[\hat{C}_{1}]]\right) \right] \le \epsilon$$
(86)

where we have extended the definition of \({F^{n}}\) in the obvious way to the case where it has one claim as an argument rather than two.

By hypothesis, D[., .] is a locally Lipschitz continuous function of its probability distribution arguments (where those distributions are considered as vectors in a Euclidean metric space) when evaluated for the distributions specified in  Eqs. (84) to (86). Then since a divergence equals zero only if its arguments are identical, for small \(\epsilon\) Eq. (84) implies:

$$\begin{aligned}{} & {} {F^{n}}(v^*,v^\dagger |\psi ^{-1}(q^{*},q^{\dagger }),E[\hat{C}_{1}]) \nonumber \\{} & {} \quad ={F^{n}}(v^\dagger \;|\; q^\dagger , E[\hat{C}_{1}]) {F^{n}}(v^*\;|\; q^*, E[\hat{C}_{1}]) \nonumber \\{} & {} \quad \simeq \ \sum _{v\in {\mathcal {V}}_2}P^{n}_{2}(v|\psi ^{-1}(q^{*},q^{\dagger }), E[\hat{C}_{1}])\overline{P}_1\nonumber \\{} & {} \qquad \times \left( v^*,v^\dagger \,|\, q^*, q^\dagger , E^{-1}[\{(\psi ^{-1}(q^{*},q^{\dagger }),v)\}\cup E[\hat{C}_{1}]]\right) . \end{aligned}$$
(87)

Equation (85) implies:

$$\begin{aligned} {F^{n}}(v^*\,|\, q^*,E[\hat{C}_{1}])&\simeq \sum _{v\in {\mathcal {V}}_2}P^{n}_{2}(v|\psi ^{-1}(q^{*}),E[\hat{C}_{1}])\overline{P}_1\nonumber \\&\quad \times \left( v^*\,|\, q^*, E^{-1}[\{(\psi ^{-1}(q^*),v)\}\cup E[\hat{C}_{1}]]\right) , \end{aligned}$$
(88)

and Eq. (86) implies:

$$\begin{aligned} {F^{n}}(v^\dagger \,|\, q^\dagger ,E[\hat{C}_{1}])&\simeq \sum _{v\in {\mathcal {V}}_2}P^{n}_{2}(v|\psi ^{-1}(q^{\dagger }),E[\hat{C}_{1}])\overline{P}_1\nonumber \\&\quad \times \left( v^\dagger \,|\, q^\dagger , E^{-1}[\{(\psi ^{-1}(q^\dagger ),v)\}\cup E[\hat{C}_{1}]]\right) . \end{aligned}$$
(89)

Together, Eqs. (87) through (89) imply:

$$\begin{aligned} {F^{n}}(v^*,v^\dagger |\psi ^{-1}(q^{*},q^{\dagger }),E[\hat{C}_{1}])&\simeq \alpha {F^{n}}(v^*\,|\, q^*,E[\hat{C}_{1}]) {F^{n}}(v^\dagger \,|\, q^\dagger ,E[\hat{C}_{1}]). \end{aligned}$$
(90)

By hypothesis,

$$\begin{aligned} {F^{n}}\left( v^*\,|\, q^*, q^\dagger , E[\hat{C}_{1}]\right)&= {F^{n}}\left( v^*\,|\, q^*, E[\hat{C}_{1}]\right) , \end{aligned}$$
(91)

and so Eq. (90) implies that

$$\begin{aligned} {F^{n}}(v^{\dagger }|q^{\dagger },(q^{*},v^{*}),E[\hat{C}_{1}])>{F^{n}}(v^{\dagger }|q^{\dagger }, E[\hat{C}_{1}]), \end{aligned}$$
(92)

as claimed.

\(\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolpert, D.H., Kinney, D.B. A Stochastic Model of Mathematics and Science. Found Phys 54, 21 (2024). https://doi.org/10.1007/s10701-024-00755-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-024-00755-9

Keywords

Navigation