Skip to main content
Log in

Efficiency of the Incomplete Enumeration Algorithm for Monte-Carlo Simulation of Linear and Branched Polymers

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

A Correction to this article was published on 06 November 2023

An Erratum to this article was published on 03 August 2005

This article has been updated

Abstract

We study the efficiency of the incomplete enumeration algorithm for linear and branched polymers. There is a qualitative difference in the efficiency in these two cases. The average time to generate an independent sample of configuration of polymer with n monomers varies as n 2 for linear polymers for large n, but as exp(cn α) for branched (undirected and directed) polymers, where 0<α<1. On the binary tree, our numerical studies for n of order 104 gives α = 0.333±0.005. We argue that α =1/3 exactly in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. A. D. Sokal, Monte-Carlo Methods for the Self Avoiding Walk 1995, in Monte Carlo and Molecular Dynamics Simulations in Polymer Science, K. Binder, ed. Oxford University Press New York 47–124, hep-lat/9405016.

  2. M. Doi S.F. Edwards (1986) The Theroy of Polymer Dynamics Clarendon Press Oxford

    Google Scholar 

  3. F.T. Wall F. Mandel (1975) ArticleTitleMacromolecular dimensions obtained by an efficient Monte Carlo method without sample attrition J. Chem. Phys 63 4592–4595 Occurrence Handle10.1063/1.431268

    Article  Google Scholar 

  4. N. Madras A.D. Sokal (1988) ArticleTitleThe pivot algorithm: A highly efficient Monte Carlo Method for the self-avoiding walk J. Stat. Phys 50 109 Occurrence Handle10.1007/BF01022990

    Article  Google Scholar 

  5. S. Caracciolo A. Pelissetto D. Sokal A. (1990) ArticleTitleA nonlocal Monte Carlo algorithm for self-avoiding walks with fixed endpoints J. Stat. Phys 60 1 Occurrence Handle10.1007/BF01013668

    Article  Google Scholar 

  6. F.T. Wall J.J. Erpenbeck (1959) ArticleTitleNew method for the statistical computation of polymer dimensions J. Chem. Phys 30 634–637 Occurrence Handle10.1063/1.1730021

    Article  Google Scholar 

  7. P. Grassberger and W. Nadler, “Go with the winners – Simulations, cond-mat/0010265”, Proc. der Heraeus-Ferienschule “‘Vom Billiardtisch bis Monte Carlo: Spielfelder der statistischen Physik”’, (Chemnitz, October 2000).

  8. E.J. Jansevan Rensburg S.G. Whittington N. Madras (1990) ArticleTitleThe pivot algorithm and polygons: Results on the FCC lattice J. Phys. A 23 1589

    Google Scholar 

  9. T. Kennedy (2002) ArticleTitleA faster implementation of the pivot algorithm for self-avoiding walks J. Stat. Phys 106 407–429 Occurrence Handle10.1023/A:1013750203191 Occurrence HandleMR1884540

    Article  MathSciNet  Google Scholar 

  10. A. Berreti D. Sokal A. (1985) ArticleTitleNew Monte Carlo method for self-avoiding walk J. Stat. Phys 40 483 Occurrence Handle10.1007/BF01017183

    Article  Google Scholar 

  11. E. J. Janse van Rensburg, and N. Madras, A nonlocal Monte Carlo algorithm for lattice trees, J. Phys. A:Math. Gen. 25:303–333 (1992); Metropolis Monte Carlo simulation of lattice animals, J. Phys. A:Math. Gen. 30:8035-8066 (1997); E. J. Janse van Rensburg and A. Rechnitzer, High precision canonical Monte Carlo determination of the growth constant of square lattice trees, Phys. Rev E 67:0361161–0361169 (2003).

  12. S. You E.J. Jansevan Rensburg (2001) ArticleTitleAdsorbing trees in two dimensions: A Monte Carlo study Phys. Rev. E 64 0461011–0461019 Occurrence Handle10.1103/PhysRevE.64.046101

    Article  Google Scholar 

  13. H. P. Hsu, W. Nadler, and P. Grassberger, Simulations of lattice animals and trees, cond-mat/0408061 (2004).

  14. S. Redner P.J. Reynolds (1981) ArticleTitlePosition-spae renormalisation group for isolated polymer chains J. Phys. A 14 2679

    Google Scholar 

  15. D. Dhar P.M. Lam (1986) ArticleTitleMonte Carlo method for series expansions J. Phys. A: Math. Gen 19 L1057–1061 Occurrence Handle10.1088/0305-4470/19/17/002

    Article  Google Scholar 

  16. P.M.. Lam (1986) ArticleTitleMonte Carlo study of lattice animals in d dimensions Phys. Rev. A 34 2339–2345 Occurrence Handle10.1103/PhysRevA.34.2339 Occurrence Handle9897522

    Article  PubMed  Google Scholar 

  17. J. L. Martin, Computer Techniques for Evaluating Lattice Constants, Phase Transitions and Critical Phenomena, C. Domb and O. M. Green, eds. (vol. 3, Academic Press London, 1983).

  18. T.E. Harris (1963) of Branching Processes Springer-Verlag Berlin

    Google Scholar 

  19. G. Grimmett (1989) Percolation Springer-Verlag Berlin

    Google Scholar 

  20. N. Madras G. Slade (1993) The Self Avoiding Walk Birkhauser Boston

    Google Scholar 

  21. B. Nienhuis (1982) ArticleTitleExact critical point and critical exponents of O(n) models in two dimensions Phys. Rev. Letts 49 1062 Occurrence Handle10.1103/PhysRevLett.49.1062

    Article  Google Scholar 

  22. I Jensen.and A.J Guttmann., Self-avoiding polygons on the square lattice, cond-mat/9905291, (1999).

  23. R. P.Stanley , Enumerative Combinatorics, (Vol.2, Chapter 6, Cambridge University Press, Cambridge, New York, 1999).

  24. W.V. Saarloos (2003) ArticleTitleFront propagation into unstable states Phys. Rep 386 29 Occurrence Handle10.1016/j.physrep.2003.08.001

    Article  Google Scholar 

  25. E. Brunet and B. Derrida, Shift in the velocity of a front due to a cutoff, Phys. Rev. E 56: 2597 (1997); S. N. Majumdar and P. L. Kaprivsky, Extreme value statistics and travelling fronts: Various applications, Physica A 318:161 (2003).

    Google Scholar 

  26. I. Jensen (2001) ArticleTitleEnumerations of lattice animals and trees J. Stat. Phys 102 865–881 Occurrence Handle10.1023/A:1004855020556

    Article  Google Scholar 

  27. K. Barat B.K. Chakrabarti (1995) ArticleTitleStatistics of self-avoiding walks on random lattices Phys Rep 258 377 Occurrence Handle10.1016/0370-1573(95)00009-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumedha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sumedha, Dhar, D. Efficiency of the Incomplete Enumeration Algorithm for Monte-Carlo Simulation of Linear and Branched Polymers. J Stat Phys 120, 71–100 (2005). https://doi.org/10.1007/s10955-005-5462-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-5462-2

Keywords

Navigation