Skip to main content

Exact Evaluation of the Mean Square Radius of Gyration for Gaussian Topological Polymer Chains

  • Chapter
  • First Online:
Topological Polymer Chemistry
  • 808 Accesses

Abstract

Various polymers with nontrivial molecular structures expressed by graphs have recently been synthesized in experiments. We call them topological polymers for the graphs. We consider a set of Gaussian chains describing an ideal topological polymer or ideal polymer network for a given graph and call it topologically constrained random walks (TCRW) of the graph. In this chapter we show an exact evaluation of the mean square radius of gyration for the TCRW of complete graphs. We first review fundamental aspects of the novel method for constructing TCRW through the boundary operator of homology theory, as given in Ref. (Cantarella et al., Gaussian Random Embeddings of Multigraph, [5]). Then we rigorously derive the average size of the TCRW for complete graphs. By making use of the asymptotic formula (Cantarella et al., Radius of Gyration, Contraction Factors, and Subdivisions of Topological Polymers, [6]) we exactly derive the mean square radius of gyration for the subdivided topological polymers consisting of Gaussian chains or the subdivided TCRW for a given graph in the large subdivision degree limit. That is, in the limit of sending the number of subdivided segments in each branch to infinity. Throughout the chapter we emphasize the key point of the TCRW method that the probability distribution function of the edge displacements or bond vectors of the TCRW for a connected graph is directly derived from the normal distribution with unit variance. For instance, thanks to it we can rapidly generate conformations of the Gaussian network of a given graph where external forces are applied at the surfaces so that it has a nonzero finite volume in equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Suzuki, T. Yamamoto, Y. Tezuka, J. Am. Chem. Soc. 136(28), 10148–10155 (2014)

    Article  CAS  Google Scholar 

  2. Y. Tezuka, Acc. Chem. Res. 50(11), 2661–2672 (2017)

    Article  CAS  Google Scholar 

  3. Y. Mato, K. Honda, B.J. Ree, K. Tajima, T. Yamamoto, T. Deguchi, T. Isono, T. Satoh, Commun. Chem. 3, 97 (2020)

    Article  CAS  Google Scholar 

  4. M. Rubinstein, R.H. Colby, Polymer Physics (Oxford Univ. Press, New York, 2003)

    Google Scholar 

  5. J. Cantarella, T. Deguchi, C. Shonkwiler, E. Uehara, Gaussian Random Embeddings of Multigraph. arXiv:2001.11709 [cond-mat.stat-mech]

  6. J. Cantarella, T. Deguchi, C. Shonkwiler, E. Uehara, Radius of Gyration, Contraction Factors, and Subdivisions of Topological Polymers. arXiv:2004.06199 [cond-mat.stat-mech]

  7. H.M. James, E. Guth, J. Chem. Phys. 11, 455–481 (1943)

    Article  CAS  Google Scholar 

  8. H.M. James, J. Chem. Phys. 15, 651–668 (1947)

    Article  CAS  Google Scholar 

  9. R. Kubo, J. Phys. Soc. Jpn. 2, 51–56 (1947)

    Article  Google Scholar 

  10. P.J. Flory, Proc. R. Soc. Lond. A. 351, 351–380 (1976)

    Article  CAS  Google Scholar 

  11. B.E, Eichinger, Macromolecules 5, 496–505 (1972)

    Google Scholar 

  12. B.E, Eichinger, Macromolecules 13, 1–11 (1980)

    Google Scholar 

  13. Y. Yang, Macromol. Theory Simul. 7, 521–549 (1998)

    Article  CAS  Google Scholar 

  14. D. Bonchev, E.J. Markel, A.H. Dekmezian, Polymer 43, 203–222 (2002)

    Article  CAS  Google Scholar 

  15. R.B. Bapat, I. Gutman, W. Xiao, Z. Naturforsch. 58a, 494–498 (2003)

    Google Scholar 

  16. F.Y. Wu, Rev. Mod. Phys. 54, 235–268 (1982)

    Article  Google Scholar 

  17. E. Uehara and T. Deguchi, J. Phys. A: Math. Gen. 51, 134001 (2018)

    Google Scholar 

  18. B.E. Eichinger, J.E. Martin, J. Chem. Phys. 69, 4595 (1978)

    Article  CAS  Google Scholar 

  19. J. Cantarella, T. Deguchi, C. Shonkwiler, E. Uehara, Random graph embeddings with general edge potentials, in preparation

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge many friends and colleagues whose helpful discussions and generous explanations shaped this work. In addition, we are grateful for the support of the Simons Foundation (#524120 to Cantarella, #354225 and #709150 to Shonkwiler), the Japan Science and Technology Agency (CREST Grant Number JPMJCR19T4), and the Japan Society for the Promotion of Science (KAKENHI Grant Number JP17H06463).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Deguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cantarella, J., Deguchi, T., Shonkwiler, C., Uehara, E. (2022). Exact Evaluation of the Mean Square Radius of Gyration for Gaussian Topological Polymer Chains. In: Tezuka, Y., Deguchi, T. (eds) Topological Polymer Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-16-6807-4_4

Download citation

Publish with us

Policies and ethics