Skip to main content
Log in

Thermal Disorder, Fluctuations, Growth and Fragmentation of Finite One-Dimensional Atomic Chains

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Ordering in one-dimensional atomic chains is studied using computer simulation. We find that dense ordered chains may exist if the system is cold enough and not macroscopically long. Growth of finite length chains from the vapor and by vapor exchange between chains begins rapidly, then slows down exponentially in time. As temperature rises density fluctuations increase, causing the chains to fragment. Independent of fragmentation, disordering begins at the ends, a condition similar to the precursor of edge and surface melting in two and three dimensions. The chemical potential of finite ordered chains is a function of length and temperature, due to the competition between attraction and internal thermal excitation. Equilibrium of chains coexisting with one-dimensional vapor produces a distribution of sizes, peaked at a temperature dependent chain length. Several results may be relevant to experimental studies of adsorption on carbon nanotubes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refrences

  1. H. Yano S. Yoshizaki S. Inagaki Y. Fukushioma N. Wada (1998) J. Low Temp. Phys. 110 573 Occurrence Handle10.1023/A:1022571203040

    Article  Google Scholar 

  2. M. Bienfait B. Asmussen M. Johnson P. Zeppenfeld (2000) Surf.Sci. 460 243 Occurrence Handle10.1016/S0039-6028(00)00563-X

    Article  Google Scholar 

  3. M. M. Calbi, M .W. Cole, S. M. Gatica, M. J. Bojan and G. Stan,Rev. Mod. Phys.73:857 (2000); C. L. Kane, E. J. Mele, A. T. Johnson, D. E. Luzzi, B. W. Smith,D. J. Hornbaker, and A. Yazdani, Phys. Rev. B 66:235423-1-15 (2002).

    Google Scholar 

  4. S.M. Gatica M.J. Bojan G. Stan M.W. Cole (2001) J.Chem.Phys. 114 3765 Occurrence Handle10.1063/1.1339886

    Article  Google Scholar 

  5. V.V. Simoyan J.K. Johnson A. Kuznitsova J.T. Yates SuffixJr (2001) J. Chem.Phys. 114 4180 Occurrence Handle10.1063/1.1344234

    Article  Google Scholar 

  6. S. Talapatra A.D. Migone (2001) Phys.Rev.Lett. 87 206106 Occurrence Handle10.1103/PhysRevLett.87.206106 Occurrence Handle11690493

    Article  PubMed  Google Scholar 

  7. Siber A. Phys. Rev. Bf 66:205406 (2002); A. Siber, Phys.Rev.B68:033406 (2003).

    Google Scholar 

  8. T. Wilson A. Tyburski M.R. Pies ParticleDe O.E. Vilches D. Becquet M. Bienfait (2002) J.Low Temp.Phys. 126 403 Occurrence Handle10.1023/A:1013769823838

    Article  Google Scholar 

  9. M. Hodak L.A. Girifalco (2003) Phys.Rev. B 68 75419 Occurrence Handle10.1103/PhysRevB.67.075419

    Article  Google Scholar 

  10. L.D. Landau E.M. Lifshitz (1958) Statistical Physics Pergamon Press New York

    Google Scholar 

  11. D.C. Mattis (1993) The Many Body Problem,An Encyclopedia of Exactly Solvable Models in One Dimension World Scientific Singapore

    Google Scholar 

  12. L. Hove ParticleVan (1950) Physica 1 IssueID6 137 Occurrence Handle10.1016/0031-8914(50)90072-3

    Article  Google Scholar 

  13. H. Takahashi (1942) Proc Phys. Math. Soc. (Japan) 24 60

    Google Scholar 

  14. V. Bagnato D. Kleppner (1991) Phys.Rev. A 44 7439 Occurrence Handle10.1103/PhysRevA.44.7439 Occurrence Handle9905884

    Article  PubMed  Google Scholar 

  15. I.E. Kamenetskiy K.K Mon J.K. Percus (2004) J.Chem.Phys. 121 7355 Occurrence Handle10.1063/1.1795131 Occurrence Handle15473806

    Article  PubMed  Google Scholar 

  16. K.K. Mon J.K. Percus (2003) J.Chem.Phys. 119 3343 Occurrence Handle10.1063/1.1591179

    Article  Google Scholar 

  17. K.K. Mon J.K. Percus J. Yan (2003) Mol.Simul. 29 721 Occurrence Handle10.1080/0892702031000121770

    Article  Google Scholar 

  18. J.K. Percus M.Q. Zhang (1990) Mol.Phys. 69 347

    Google Scholar 

  19. M.Q. Zhang (1991) J.Phys.A Math.Gen. 24 3949 Occurrence Handle10.1088/0305-4470/24/16/029

    Article  Google Scholar 

  20. J.K. Percus (2002) Mol.Phys. 100 2417 Occurrence Handle10.1080/00268970110109925

    Article  Google Scholar 

  21. T.M. Truskett S. Torquato P.G. Debenedem (1998) Phys.Rev.E 58 7369 Occurrence Handle10.1103/PhysRevE.58.7369

    Article  Google Scholar 

  22. J. Piasecki L. Peliti (1993) J. Phys.A Math.Gen. 26 4819 Occurrence Handle10.1088/0305-4470/26/19/015

    Article  Google Scholar 

  23. D.J Kaup G.H. Paine (1992) J.Math.Phys. 33 3907 Occurrence Handle10.1063/1.529838

    Article  Google Scholar 

  24. S. Punnathanam D.S. Corti (2002) J.Chem.Phys. 117 6169 Occurrence Handle10.1063/1.1503334

    Article  Google Scholar 

  25. U.M.B. Marconi P. Tarazona (1999) J.Chem.Phys. 110 8032 Occurrence Handle10.1063/1.478705

    Article  Google Scholar 

  26. H. Ted Davis (1990) J.Chem.Phys. 93 4339 Occurrence Handle10.1063/1.458716

    Article  Google Scholar 

  27. M. Hodak L.A. Girifalco (2003) Phys.Rev.B 6808 IssueID8 5405

    Google Scholar 

  28. L.A Girifalco M. Hodak (2003) Appl.Phys.A 76 487 Occurrence Handle10.1007/s00339-002-2036-x

    Article  Google Scholar 

  29. M. Hodak L.A. Girifalco (2001) Phys.Rev.B 6403 IssueID3 5407

    Google Scholar 

  30. J.O. Hirschfelder C.F. Curtiss R.B. Bird (1954) Molecular Theory of Gases and Liquids Wiley New York

    Google Scholar 

  31. J.M. Phillips R.D. Murphy L.W. Bruch (1981) J.Chem.Phys. 75 5097 Occurrence Handle10.1063/1.441901

    Article  Google Scholar 

  32. F. Reif (1965) Fundamentals of Statistical and Thermal Physics McGraw-Hill New York

    Google Scholar 

  33. R.E. Peierls (1935) Ann.de l’Institut Henri Poincare 5 177

    Google Scholar 

  34. J.G. Dash M. Bretz (1972) J.Low Temp.Phys. 9 291 Occurrence Handle10.1007/BF00654848

    Article  Google Scholar 

  35. J.G. Dash (1975) Films on Solid Surfaces Academic Press New York

    Google Scholar 

  36. J.G. Dash (2002) Contemp.Phys. 43 42 Occurrence Handle10.1080/00107510210151763

    Article  Google Scholar 

  37. J. D. Gunton, M. San Miguel, and P. S. Sahni, in Phase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1983).

  38. M.A. Fortes V. Ramos A. Soares (1992) Mater.Sci.Forum 94-96 337

    Google Scholar 

  39. J. Carr R. Pego (1994) Proc.R. Sic A 436 569

    Google Scholar 

  40. J. Cahn R. Kobayashi (1995) Acta Metall. 43 931 Occurrence Handle10.1016/0956-7151(94)00299-W

    Article  Google Scholar 

  41. O. Hunderi N. Ryum (1996) Acta Mater. 44 1673 Occurrence Handle10.1016/1359-6454(95)00261-8

    Article  Google Scholar 

  42. D.P. Burnie M.C. Weinberg (1996) Scr.Mater. 35 361 Occurrence Handle10.1016/1359-6462(96)00150-9

    Article  Google Scholar 

  43. J.N. Israelichvili (1985) Intermolecular and Surface Forces Academic Press New York

    Google Scholar 

  44. W.M. Gelbart A. Ben-Shaul D. Roux (Eds) (1995) Micelles, Membranes, Microemulsions and Monolayers Springer-Verlag Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Phillips.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, J.M., Dash, J.G. Thermal Disorder, Fluctuations, Growth and Fragmentation of Finite One-Dimensional Atomic Chains. J Stat Phys 120, 721–735 (2005). https://doi.org/10.1007/s10955-005-5252-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-5252-x

Key words

Navigation