Skip to main content
Log in

Short-range order and melting anomalies in thin films

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Recent experiments show that high-coverage4He monolayers adsorbed on graphite have low-temperature heat capacities corresponding to two-dimensional solids. At higher temperatures the solid phase appears to “melt” by a continuous process, suggesting a connection with the theoretical prediction that there can be no long-range crystalline order at finiteT in two-dimensional systems governed by typical interatomic forces. This paper explores the theory in greater detail, with attention to long-range and short-range order and their experimental implications. Several models are studied: two-dimensional harmonic solids with “Debye” phonon spectra, lattices with Van Hove singularities, two-dimensional quantum solids, and effects of periodic potentials due to substrate structure. The theory is discussed in the light of current understanding of melting, and the following new melting hypothesis is proposed.

  1. 1.

    The solid-liquid transition occurs on a mode-by-mode basis, beginning with the lowest wave vectors.

  2. 2.

    Solid instability is primarily associated with transverse modes.

  3. 3.

    A mode becomes unstable when the range of crystalline order becomes comparable with its wavelength.

Applied to two-dimensional systems, the hypothesis predicts a continuous transition with a heat-capacity contribution similar in its temperature dependence to the anomalies seen in4He monolayers and N2 multilayers. Applied to three-dimensional Debye solids, the same hypothesis predicts an abrupt first-order process, with a melting temperature obeying the Lindemann law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bretz, G. B. Huff, and J. G. Dash,Phys. Rev. Letters 28, 729 (1972).

    Google Scholar 

  2. R. E. Peierls,Ann. Inst. Henri Poincare 5, 177 (1935).

    Google Scholar 

  3. L. D. Landau,Phys. Z. Sowjetunion 11, 26 (1937).

    Google Scholar 

  4. B. Jancovici,Phys. Rev. Letters 19, 20 (1967).

    Google Scholar 

  5. L. Gunther,Phys. Letters 25A, 649 (1967); errata26A, 216 (1968).

    Google Scholar 

  6. N. D. Mermin,Phys. Rev. 176, 250 (1968).

    Google Scholar 

  7. Y. Imry and L. Gunther,Phys. Rev. B3, 2555 (1970).

    Google Scholar 

  8. J. F. Fernandez.Phys. Rev. A2, 2555 (1970).

    Google Scholar 

  9. E. Jahnke and F. Emde,Tables of Functions (Dover, New York, 1945).

    Google Scholar 

  10. L. Van Hove,Phys. Rev. 89, 1189 (1953).

    Google Scholar 

  11. E. W. Montroll,J. Chem. Phys. 15, 575 (1947).

    Google Scholar 

  12. S. C. Ying,Phys. Rev. B3, 4160 (1971).

    Google Scholar 

  13. F. Ricca, C. Pisani, and E. Garrone,J. Chem. Phys. 51, 4079 (1969).

    Google Scholar 

  14. A. D. Novaco and F. J. Milford,J. Low Temp. Phys. 3, 307 (1969).

    Google Scholar 

  15. H. W. Lai, C. W. Woo, and F. Y. Wu,J. Low Temp. Phys. 3, 463 (1970).

    Google Scholar 

  16. D. E. Hagen, A. D. Novaco, and F. J. Milford,Proc. Second Int. Symposium on Adsorption-Desorption Phenomena (Academic Press, New York, to be published).

  17. M. Bretz and J. G. Dash,Phys. Rev. Letters 26, 963 (1971).

    Google Scholar 

  18. G. Ahlers,Phys. Rev. A2, 1505 (1970).

    Google Scholar 

  19. D. O. Edwards, A. S. McWilliams, and J. G. Daunt,Phys. Letters 1, 101 (1962).

    Google Scholar 

  20. M. Bretz and J. G. Dash,Phys. Rev. Letters 27, 647 (1971).

    Google Scholar 

  21. J. A. Morrison and L. E. Drain,J. Chem. Phys. 19, 1063 (1951).

    Google Scholar 

  22. J. A. Morrison, L. E. Drain, and J. S. Dugdale,Can. J. Chem. 30, 890 (1952).

    Google Scholar 

  23. K. S. Dennis, E. L. Pace, and C. S. Baughman,J. Am. Chem. Soc. 75, 3269 (1953).

    Google Scholar 

  24. C. Domb and J. S. Dugdale, inProgress in Low Temperature Physics, C. J. Gorter, ed. (North-Holland, Amsterdam, 1957), Vol. 2, Chap. 11.

    Google Scholar 

  25. F. A. Lindemann,Z. Physik 11, 609 (1910).

    Google Scholar 

  26. D. Pines,Elementary Excitations in Solids (W. A. Benjamin, New York, 1963), pp. 34–37.

    Google Scholar 

  27. J. Frenkel,Kinetic Theory of Liquids (Oxford University Press, London, 1946), Chap. 3.

    Google Scholar 

  28. M. Born,J. Chem. Phys. 7, 591 (1939).

    Google Scholar 

  29. W. Shockley,Rep. 9th Solvay Congress 1951, p. 431.

  30. B. J. Alder, W. G. Hoover, and T. E. Wainwright,Phys. Rev. Letters 11, 241 (1963).

    Google Scholar 

  31. B. J. Alder, W. R. Gardner, J. K. Hoffer, N. E. Phillips, and D. A. Young,Phys. Rev. Letters 21, 732 (1968).

    Google Scholar 

  32. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,Molecular Theory of Gases and Liquids (John Wiley & Sons, New York, 1954), p. 285.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dash, J.G., Bretz, M. Short-range order and melting anomalies in thin films. J Low Temp Phys 9, 291–306 (1972). https://doi.org/10.1007/BF00654848

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00654848

Keywords

Navigation