Skip to main content
Log in

Large Deviation Techniques Applied to Systems with Long-Range Interactions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We discuss a method to solve models with long-range interactions in the microcanonical and canonical ensemble. The method closely follows the one introduced by R.S. Ellis, Physica D 133:106 (1999), which uses large deviation techniques. We show how it can be adapted to obtain the solution of a large class of simple models, which can show ensemble inequivalence. The model Hamiltonian can have both discrete (Ising, Potts) and continuous (HMF, Free Electron Laser) state variables. This latter extension gives access to the comparison with dynamics and to the study of non-equilibrium effects. We treat both infinite range and slowly decreasing interactions and, in particular, we present the solution of the α-Ising model in one-dimension with 0 ⩽ α < 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dauxois T., Ruffo S., Arimondo E., and Wilkens M. (eds.) Dynamics and Thermo-dynamics of Systems with Long-Range Interactions, Lecture Notes in Physics, Vol. 602 (Springer, 2002).

  2. T. Padmanabhan (1990) Phys. Rep. 188 285 Occurrence Handle10.1016/0370-1573(90)90051-3

    Article  Google Scholar 

  3. D.C. Brydges P.A. Martin (1999) J. Stat Phys. 96 1163 Occurrence Handle10.1023/A:1004600603161

    Article  Google Scholar 

  4. Chavanis P.H., Statistical mechanics of two-dimensional vortices and Stellar systems, in Ref. [1].

  5. Elskens Y., Kinetic theory for plasmas and wave-particle Hamiltonian dynamics, in Ref. [1].

  6. Y. Elskens D. Escande (2002) Microscopic Dynamics of Plasmas and Chaos IOP Publishing Bristol

    Google Scholar 

  7. P. Gaspard (2003) Phys. Rev. E 68 56209 Occurrence Handle10.1103/PhysRevE.68.056209

    Article  Google Scholar 

  8. Y. Y. Yamaguchi J. Barré F. Bouchet T. Dauxois S. Ruffo (2004) Physica A 337 36

    Google Scholar 

  9. J. Barré, D. Mukamel, and Ruffo S., Ensemble inequivalence in mean-field models of magnetisms, in Ref. [1].

  10. For short-range interactions, the limit is performed by letting both the number of particles and volume go to infinity, with a fixed ratio between the two quantities.

  11. J. Messer H. Spohn (1982) J. Stat Phys. 29 561 Occurrence Handle10.1007/BF01342187

    Article  Google Scholar 

  12. P. Hertel W. Thirring (1971) Ann. Phys. 63 520 Occurrence Handle10.1016/0003-4916(71)90025-X

    Article  Google Scholar 

  13. M. K. H. Kiessling J. L. Lebowitz (1997) Lett. Math. Phys. 42 43 Occurrence Handle10.1023/A:1007370621385

    Article  Google Scholar 

  14. J. Barré D. Mukamel S. Ruffo (2001) Phys. Rev. Lett. 87 030601 Occurrence Handle10.1103/PhysRevLett.87.030601 Occurrence Handle11461546

    Article  PubMed  Google Scholar 

  15. D. H. E. Gross (2001) Microcanonical Thermodynamics: Phase Transitions in Small Systems, Lecture Note in Physics World Scientific Singapore

    Google Scholar 

  16. R. S. Ellis (1985) Entropy, Large Deviations, and Statistical Mechanics Springer-Verlag New York

    Google Scholar 

  17. A. Dembo O. Zeitouni (1998) Large Deviations Techniques and their Applications Springer-Verlag New York

    Google Scholar 

  18. J. Michel and R. Robert, Comm. Math. Phys.159:195 (1994); Robert R., Comm. Math. Phys. 212:245 (2000).

  19. Ellis R.S., Physica D 133:106 (1999); Ellis R.S., Haven K., and Turkington B., J. Stat. Phys.101:999 (2000) and Nonlinearity 15:239 (2002).

  20. J. Barré, Mécanique statistique et dynamique hors équilibre de systèmes avec intéractions à longues portées, PhD thesis (ENS Lyon, 2003).

  21. R. S. Ellis H. Touchette B. Turkington (2004) Physica A 335 518

    Google Scholar 

  22. Dauxois T., Latora V., Rapisarda A., Ruffo S., and Torcini A., The Hamiltonian mean field model: From dynamics to statistical mechanics and back, in Ref. [1].

  23. M. Antoni S. Ruffo (1995) ArticleTitlePhys Rev. E 52 2361 Occurrence Handle10.1103/PhysRevE.52.2361 Occurrence Handle1:CAS:528:DyaK2MXotFyhu78%3D

    Article  CAS  Google Scholar 

  24. R. Bonifacio F. Casagrande G. Cerchioni L. Salvo Souza ParticleDe P. Pierini N. Piovella (1990) Riv. Nuovo Cimento 13 1 Occurrence Handle1:CAS:528:DyaK3MXhsVSjug%3D%3D

    CAS  Google Scholar 

  25. F. J. Dyson (1969) Comm. Math. Phys. 12 91 Occurrence Handle10.1007/BF01645907

    Article  Google Scholar 

  26. J. Miller (1990) Phys. Rev. Lett. 65 2137 Occurrence Handle10.1103/PhysRevLett.65.2137 Occurrence Handle10042463

    Article  PubMed  Google Scholar 

  27. R. Robert J. Sommeria (1991) J. Fluid Mech. 229 291

    Google Scholar 

  28. I. Ispolatov E. G. D. Cohen (2001) Physica A 295 475

    Google Scholar 

  29. D. H. E. Gross E. V. Votyakov (2000) Eur. Phys. J. B 15 115 Occurrence Handle10.1007/s100510051105 Occurrence Handle1:CAS:528:DC%2BD3cXjt1Churk%3D

    Article  CAS  Google Scholar 

  30. Alternatively, one could have left energy non-extensive and accordingly rescale temperature.

  31. F. Bouchet J. Barré (2005) ArticleTitleClassification of phase transitions and ensemble inequivalence in systems with long-range interactions J Stat Phys. 118 IssueID5–6 1073–1105 Occurrence Handle10.1007/s10955-004-2059-0 Occurrence HandleMR2130888

    Article  MathSciNet  Google Scholar 

  32. R. Toral (2004) J. Stat. Phys. 114 1393 Occurrence Handle10.1023/B:JOSS.0000013963.16180.a3

    Article  Google Scholar 

  33. C. Anteneodo (2004) Physica A 342 112

    Google Scholar 

  34. M. Antoni H. Hinrichsen S. Ruffo (2002) Chaos Soliton and Fractals 13 393 Occurrence Handle10.1016/S0960-0779(01)00020-0

    Article  Google Scholar 

  35. Velazquez L., Sospedra R., Castro J.C., and F. Guzman, On the dynamical anomalies in the Hamiltonian Mean Field model, cond-mat/0302456.

  36. F. Bouchet (2004) Phys. Rev. E 70 036113 Occurrence Handle10.1103/PhysRevE.70.036113

    Article  Google Scholar 

  37. Binney J. and Tremaine S., Galactic Dynamics (Princeton Series in Astrophysics, 1987).

  38. J. Barré T. Dauxois G. De Ninno D. Fanelli S. Ruffo (2004) Physical Review E 69 045501 Occurrence Handle10.1103/PhysRevE.69.045501

    Article  Google Scholar 

  39. M. C. Firpo Y. Elskens (2000) Phys. Rev. Lett. 84 3318 Occurrence Handle10.1103/PhysRevLett.84.3318 Occurrence Handle1:CAS:528:DC%2BD3cXitlWhtbY%3D Occurrence Handle11019079

    Article  CAS  PubMed  Google Scholar 

  40. Ispolatov I. and Cohen E.G.D., Phys. Rev. Lett. 87:210601 (2000); Phys. Rev. E 64:056103 (2000).

    Google Scholar 

  41. C. Anteneodo C. Tsallis (1998) Phys. Rev. Lett. 80 5313 Occurrence Handle10.1103/PhysRevLett.80.5313 Occurrence Handle1:CAS:528:DyaK1cXjvVyjs7c%3D

    Article  CAS  Google Scholar 

  42. F. Tamarit C. Anteneodo (2000) Phys. Rev. Lett. 84 208 Occurrence Handle10.1103/PhysRevLett.84.208 Occurrence Handle1:CAS:528:DC%2BD3cXisFSqsg%3D%3D Occurrence Handle11015874

    Article  CAS  PubMed  Google Scholar 

  43. Campa A., Giansanti A., and Moroni D., Phys. Rev. E 62:303 (2000); Chaos, Solitons, Fractals 13:407 (2002); J. Phys. A 36:6897 (2003)

    Google Scholar 

  44. B. P. Vollmayr-Lee E. Luijten (2001) Phys. Rev. E 63 031108 Occurrence Handle10.1103/PhysRevE.63.031108 Occurrence Handle1:STN:280:DC%2BD38%2FgvVertQ%3D%3D

    Article  CAS  Google Scholar 

  45. R. Salazar R. Toral A. R. Plastino (2002) Physica A 305 144

    Google Scholar 

  46. J. Barré (2002) Physica A 305 172

    Google Scholar 

  47. C. Boucher, R. S. Ellis, B. Turkington, (1999). Ann. Prob. 27:297 (1999). Erratum, Ann. Prob. 30:2113 (2002).

  48. Kastner M., submitted to Phys. Rev. Lett.; also cond-mat/0412199.

  49. M. Grousson G. Tarjus P. Viot (2000) Phys. Rev. E 62 7781 Occurrence Handle10.1103/PhysRevE.62.7781 Occurrence Handle1:CAS:528:DC%2BD3cXoslahu7w%3D

    Article  CAS  Google Scholar 

  50. Kardar M., Phys. Rev. B 28:244 (1983); Phys. Rev. Lett. 51:523 (1983).

    Google Scholar 

  51. L. Onsager (1949) Nuovo Cimento Suppl. 6 279 Occurrence Handle1:CAS:528:DyaG3cXhvFantA%3D%3D

    CAS  Google Scholar 

  52. M. K. H. Kiessling (1993) Comm. Pure App. Math. 46 27

    Google Scholar 

  53. Caglioti E., Lions P.L., Marchioro C., and M. Pulvirenti, Comm. Math. Phys. 143:501 (1992); Comm. Math. Phys. 174:229 (1995).

    Google Scholar 

  54. D. Lynden-Bell R. Wood (1968) Monthly Notices of the Royal Astronomical Society 138 495

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Dauxois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barré, J., Bouchet, F., Dauxois, T. et al. Large Deviation Techniques Applied to Systems with Long-Range Interactions. J Stat Phys 119, 677–713 (2005). https://doi.org/10.1007/s10955-005-3768-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-3768-8

Keywords

Navigation