Skip to main content
Log in

On the Second Law of Thermodynamics and the Piston Problem

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The piston problem is investigated in the case where the length of the cylinder is infinite (on both sides) and the ratio m/M is a very small parameter, where m is the mass of one particle of the gaz and M is the mass of the piston. Introducing initial conditions such that the stochastic motion of the piston remains in the average at the origin (no drift), it is shown that the time evolution of the fluids, analytically derived from Liouville equation in a previous work, agrees with the Second Law of thermodynamics. We thus have a non equilibrium microscopical model whose evolution can be explicitly shown to obey the two laws of thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ch. Gruber, Thermodynamics of systems with internal adiabatic constraints: time evolution of the adiabatic piston, Eur.J.Phys. 20:259–266 (1999).

    Google Scholar 

  2. J. Piasecki and Ch. Gruber, From the adiabatic piston to macroscopic motion induced by fluctuations, Physica A 265:463–472 (1999).

    Google Scholar 

  3. Ch. Gruber and J. Piasecki, Stationary motion of the adiabatic piston, Physica A 268:412 (1999).

    Google Scholar 

  4. Ch. Gruber and L. Frachebourg, On the adiabatic properties of a stochastic adiabatic wall: evolution, stationary non-equilibrium and equilibrium states, Physica A 272:392 (1999).

    Google Scholar 

  5. Ch. Gruber, S. Pache and A. Lesne, (5a) Deterministic motion of the controversial piston in the thermodynamic limit, J.Stat.Phys. 108:669–701 (2002). (5b) Two-time-scale relaxation towards thermal equilibrium of the enigmatic piston, J.Stat.Phys 112:1199–1228 (2003).

    Google Scholar 

  6. Ch. Gruber and S. Pache, The controversial piston in the thermodynamic limit, Physica A 314:345 (2002).

    Google Scholar 

  7. S. Pache, Propri´et´es hors-´equilibre d'une paroi adiabatique, Diploma thesis EPFL (2000), unpublished.

  8. G. P. Morris and Ch. Gruber, (8a) Strong and weak damping in the adiabatic motion of the simple piston, J.Stat.Phys. 109:649–568 (2002). (8b) A Boltzmann Equation approach to the dynamics of the simple piston, J.Stat.Phys.113:297–333 (2003).

    Google Scholar 

  9. N. Chernov, On a slow drift of a massive piston in an ideal gas that remains at mechanical equilibrium (preprint, Sept. 2003).

  10. N. Chernov, J. L. Lebowitz and Ya. Sinai, (10a) Dynamics of a massive piston in an ideal gas (preprint, Jan. 2003). (10b) Dynamics of a massive piston in an ideal gas, Russ.Math.Surveys 57:1–84 (2002). (10c) Scaling Dynamics of a massive piston in a cube filled with ideal gas: exact results, J.Stat.Phys. 109:529–548 (2002).

    Google Scholar 

  11. N. Chernov and J. L. Lebowitz, Dynamics of a massive piston in an ideal gas: oscillatory motion and approach to equilibrium, J.Stat.Phys. 109:507–527 (2002).

    Google Scholar 

  12. J. Piasecki, (12a) A model of Brownian motion in an inhomogeneous environment J.Phys.Cond.Matter, 14:1 (2002). (12b) Drift velocity induced by collision J.Stat.Phys. 104:1145 (2001). (12c) Stochastic adiabatic wall J.Stat.Phys.101:711 (2000).

    Google Scholar 

  13. A. Plyukhin and J. Schonfield, (13a) The Langevin Equation for the extented Rayleigh model with asymmetric bath (preprint, May 2003). (13b) On the Langevin Equation for the Rayleigh model with finite range interaction (Preprint, May 2003).

  14. J. Piasecki, and Ya. Sinai, A model of non equilibrium statistical mechanics, Dynamics: Model and Kinetic methods for non equilibrium Many Body systems, J. Karkheck (ed), (2000) 191–199.

  15. J. L. Lebowitz, J. Piasecki, and Ya. Sinai, Scaling dynamics of a massive piston in an ideal gas, Encyclopedia of Mathematical Sciences Series (101, Springer-Verlag, Berlin 2000), pp. 217–227.

    Google Scholar 

  16. J. L. Lebowitz, J. Piasecki, and Ya. Sinai, in Hard ball systems and the Lorentz gas, Encyclopedia of Mathematical Sciences Series (101, Springer-Verlag, Berlin 2000).

    Google Scholar 

  17. C. Crosignani, On the validity of the Second Law of thermodynamics in the mesoscopic real, Eur.Phys.Lett. 53:290 (2001).

    Google Scholar 

  18. E. Kestemont, C. Van den Broeck, and M. Malek Mansour, The “adiabatic” piston: and yet it moves, Europhys.Lett. 49:143 (2000).

    Google Scholar 

  19. C. Van den Broeck, E. Kestemont, and M. Malek Mansour, Heat conductivity shared by a piston Europhys.Letters 56:771 (2001).

    Google Scholar 

  20. T. Munakata and H. Ogawa, Dynamical aspects of an adiabatic piston, Phys.Rev.E 64:036119 (2001).

    Google Scholar 

  21. J. A. White, F. L. Roman, A. Gonzales, and S. Velasco, The “adiabatic” piston at equilibrium: spectral analysis and time-correlation function, Europhys.Lett. 59:459–485 (2002).

    Google Scholar 

  22. M. J. Renne, M. Ruijgrok, and Th. Ruijgrok, the enigmatic piston, Acta Physica Polonica B 32:4183 (2001).

    Google Scholar 

  23. V. Balakrishnan, I. Bena, and C. Van den Broeck, Diffusion and velocity correlation functions, Phys.Rev.E 65:031102 (2002).

    Google Scholar 

  24. C. Garrod and M. Rosina, Three interesting problems in statistical mechanics, Am.J.Phys. 67:1240–1244 (1999).

    Google Scholar 

  25. H. B. Callen, Thermodynamics, John Wiley and Sons, New York (1963), Appendix C. See also H. B. Callen, Thermodynamics and Thermostatics, John Wiley and Sons, 2nd edition, New York (1985), pp. 51, 53.

    Google Scholar 

  26. O. L. de Lange and J. Pierrus, Measurement of bulk moduli and ratio of specific heats of gases using R´uchardt's experiment, Am.J.Phys. 68:265–270 (2000).

    Google Scholar 

  27. L. D. Landau and E. M. Lifshitz, Fluid mechanics, Pergamon Press, New York (1959), in §85: Shock waves in a perfect gas, pp. 329 in Chapter X: One-dimensional gas flow.

    Google Scholar 

  28. P. Gaspard, G. Nicolis and J. R. Dorfman, Diffusive Lorentz gases and multibaker maps are compatible with irreversible thermodynamics, Physics A 323:294–322 (2003).

    Google Scholar 

  29. G. Gallavotti, Nonequilibrium thermodynamics? (preprint IHES/P/03/05, 2003).

  30. E. Lieb and J. Yngvason, Physics and mathematics of the Second Law of thermodynamics, Phys.Rep. 310:1–99 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruber, C., Pache, S. & Lesne, A. On the Second Law of Thermodynamics and the Piston Problem. Journal of Statistical Physics 117, 739–772 (2004). https://doi.org/10.1007/s10955-004-2271-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-004-2271-y

Navigation