Skip to main content
Log in

On First-order Corrections to the LSW Theory I: Infinite Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present a new method to efficiently identify the first-order correction to the classical model by Lifshitz, Slyozov and Wagner (LSW). The latter describes the evolution of second phase particles embedded in a matrix during the last stage of a phase transformation and is valid in the regime of vanishing volume fraction φ of particles. We consider a statistically homogeneous (and thus infinite) system, where the first-order correction is of order φ1/2. The key idea is to relate the full system of particles to systems where a finite number of particles has been removed. This method decouples screening and correlation effects and allows to efficiently evaluate conditional expected values of the particle growth rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Akaiwa P.W. Voorhees (1994) ArticleTitleLate–stage phase separation: Dynamics, spatial correlations and structure functions Phys Rev E 49 IssueID(5A 3860–3880 Occurrence Handle10.1103/PhysRevE.49.3860

    Article  Google Scholar 

  2. N. Alikakos G. Fusco (1999) ArticleTitleThe equations of Ostwald ripening for dilute systems J Stat Phys. 95 IssueID(5/6 851–866 Occurrence Handle10.1023/A:1004594131850

    Article  Google Scholar 

  3. N. Alikakos G. Fusco (2003) ArticleTitleOstwald ripening for dilute systems under quasistationary dynamics, Commun Math. Phys. 238 IssueID(3 429–479 Occurrence Handle10.1007/s00220-003-0834-4

    Article  Google Scholar 

  4. A.J. Ardell (1972) ArticleTitleThe effect of volume fraction on particle coarsening: Theoretical considerations Acta Metall. 20 61–73 Occurrence Handle10.1016/0001-6160(72)90114-9

    Article  Google Scholar 

  5. Cioranescu D., and Murat F. (1999). A strange term coming from nowhere, in Topics in the Mathematical Modelling of Composite Materials , A. Cherkaev and R. V. Kohn, eds. (Birkh ä user, , pp. 45–94

  6. Conti S., Hönig A., Niethammer B., and Otto F., Nonuniversality in low-volume fraction Ostwald ripening, Preprint

  7. R. Figari E. Orlandi S. Teta (1985) ArticleTitleThe Laplacian in regions with many small obstacles: Fluctuations around the limit operator J Stat. Phys. 41 IssueID(3/4 465–487 Occurrence Handle10.1007/BF01009018

    Article  Google Scholar 

  8. R. Figari G. Papanicolaou J. Rubinstein (1987) The point interaction approximation for diffusion in regions with many small holes, in Stochastic Methods in biology (Nagoya, 1985) Lecture Notes in Biomathematics, Vol. 70 Springer Berlin 75–86

    Google Scholar 

  9. V.E. Fradkov M.E. Glicksman S.P. Marsh (1996) ArticleTitleCoarsening kinetics in finite clusters Phys. Rev. E 53 3925–3932 Occurrence Handle10.1103/PhysRevE.53.3925 Occurrence Handle1:CAS:528:DyaK28XisVSntr4%3D

    Article  CAS  Google Scholar 

  10. S.C. Hardy P.W. Voorhees (1988) ArticleTitleOstwald ripening in a system with a high volume fraction of coarsening phase Met. Trans A 19A 2713–2721 Occurrence Handle1:CAS:528:DyaL1MXmt1Sgsg%3D%3D

    CAS  Google Scholar 

  11. H ö nig A., Niethammer B., and Otto F., On first order corrections to the LSW theory II: Finite systems, J. Stat. Phys. , in press 119(1/2):123-164(2005).

  12. Jabin P. E. and Otto F., Control on the distribution function of particles in a Stokes flow, Commun Math. Phys.

  13. K. Kawasaki Y. Enomoto M. Tokuhama (1986) ArticleTitleElementary derivation of kinetic equation for Ostwald ripening Physica A 135 426–445

    Google Scholar 

  14. I.M. Lifshitz V.V. Slyozov (1961) ArticleTitleThe kinetics of precipitation from supersaturated solid solutions J Phys Chem. Solids 19 35–50 Occurrence Handle10.1016/0022-3697(61)90054-3

    Article  Google Scholar 

  15. H. Mandyam M.E. Glicksman J. Helsing S.P. Marsh (1998) ArticleTitleStatistical simulations of diffusional coarsening in finite clusters Phys Rev E 58 IssueID(2 2119–2130 Occurrence Handle10.1103/PhysRevE.58.2119

    Article  Google Scholar 

  16. M. Marder (1987) ArticleTitleCorrelations and Ostwald ripening. Phys Rev. A , 36 858–874

    Google Scholar 

  17. J.A. Marqusee J. Ross (1984) ArticleTitleTheory of Ostwald ripening: Competitive growth and its dependence on volume fraction J Chem. Phys. 80 536–543 Occurrence Handle10.1063/1.446427 Occurrence Handle1:CAS:528:DyaL2cXptFGitg%3D%3D

    Article  CAS  Google Scholar 

  18. H. Mori M. Tokuyama T. Morita (1978) ArticleTitleProg Theor. Phys Suppl. 64 50

    Google Scholar 

  19. B. Niethammer (1999) ArticleTitleDerivation of the LSW-theory for Ostwald ripening by homogenization methods Arch. Rat Mech Anal 147 IssueID2 119–178 Occurrence Handle10.1007/s002050050147

    Article  Google Scholar 

  20. B. Niethammer (2000) ArticleTitleThe LSW-model for Ostwald ripening with kinetic undercooling Proc. R. Soc Edinb 130 1337–1361

    Google Scholar 

  21. B. Niethammer F. Otto (2001) ArticleTitleOstwald ripening: The screening length revisited Calc. Var. PDE 13 IssueID(1 33–68

    Google Scholar 

  22. B. Niethammer R.L. Pego (1999) ArticleTitleNon-self-similar behavior in the LSW theory of Ostwald ripening J Stat Phys. 95 IssueID(5/6 867–902 Occurrence Handle10.1023/A:1004546215920

    Article  Google Scholar 

  23. Niethammer B. and Vel á zquez J.J.L. Screening in interacting particle systems, Preprint

  24. B. Niethammer J.J.L. Velá zquez (2004) ArticleTitleHogenization in coarsening systems II: Stochastic case Math Mod Meth. Appl. Sci. 149 1–24

    Google Scholar 

  25. S. Ozawa (1983) ArticleTitleOn an elaboration of M Kac’s theorem concerning eigenvalues of the Laplacian in a region with randomly distributed small obstacles, Commun. Math. Phys. 91 473–487 Occurrence Handle10.1007/BF01206016

    Article  Google Scholar 

  26. R.L. Pego (1989) ArticleTitleFront migration in the nonlinear Cahn–Hilliard equation Proc. R. Soc Lond . A, 422 261–278

    Google Scholar 

  27. M. Reed M.B. Simon (1975) Methods of Modern Mathematical Physics II Academic Press New York.

    Google Scholar 

  28. M. Tokuhama K. Kawasaki (1984) ArticleTitleStatistical–mechanical theory of coarsening of spherical droplets Physica A 123 386–411

    Google Scholar 

  29. M. Tokuhama K. Kawasaki Y. Enomoto (1986) ArticleTitleKinetic equation for Ostwald ripening Physica A 134 323–338

    Google Scholar 

  30. M. Tokuhama Y. Enomoto K. Kawasaki (1987) ArticleTitleDynamics of fluctuations in equations for Ostwald ripening A new equation for the structure function Physica A , 143 183–209

    Google Scholar 

  31. M. Tokuhama Y. Enomoto (1993) ArticleTitleTheory of phase-separation in quenched dynamic binary mixtures Phys. Rev. E 47 IssueID(2 1156–1179 Occurrence Handle10.1103/PhysRevE.47.1156

    Article  Google Scholar 

  32. A.Y. Toukmaji J.A. Board (1996) ArticleTitleEwald summation techniques in perspective: A survey, Comp Phys Commun. 95 73–92 Occurrence Handle10.1016/0010-4655(96)00016-1 Occurrence Handle1:CAS:528:DyaK28XivFOjurg%3D

    Article  CAS  Google Scholar 

  33. N.G. VanKampen (1992) Stochastic Processes in Physics and Chemistry North Holland Amsterdam

    Google Scholar 

  34. J.J.L. Velázquez (2000) ArticleTitleOn the effect of stochastic fluctuations in the dynamics of the Lifshitz–Slyozov–Wagner model J. Stat. Phys. 99 57–113 Occurrence Handle10.1023/A:1018640505926

    Article  Google Scholar 

  35. C. Wagner (1961) ArticleTitleTheorie der Alterung von Niederschlägendurch Umlösen Z. Elektrochemie 65 581–594 Occurrence Handle1:CAS:528:DyaF38XivVyhtg%3D%3D

    CAS  Google Scholar 

  36. J. Weins J. W. Cahn (1973) NoChapterTitle E. G. C. Kuczynski (Eds) The effect of size and distribution of second phase particles and voids on sintering. in Sintering and Related Phenomena Plenum London 151

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Niethammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hönig, A., Niethammer, B. & Otto, F. On First-order Corrections to the LSW Theory I: Infinite Systems. J Stat Phys 119, 61–122 (2005). https://doi.org/10.1007/s10955-004-2057-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-004-2057-2

Keywords

Navigation