Skip to main content
Log in

From Solutions to Polymers: A High Temperature–High Pressure Journey in Experimental Thermodynamics

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Since the early ages any progress in thermodynamics, in fact its birth itself, results from the observation of phenomena combining heat and mechanical effects. This is also true in chemical thermodynamics. In addition, in particular in solution thermodynamics, chemical effects must be taken into account. From this point of view, solution thermodynamics is a science of observation developed from judicially conceived experimental measurements that characterize and quantify the contributions of the chemical species involved. Using the formal rather simple scheme of basic relations built from equally simple thermodynamic principles, the thermodynamic behavior resulting from the chemical interactions of an investigated chemical system can be related to the chemical potentials of the system’s components. Experimental thermodynamics is a science by itself. In this context, calorimetric techniques play a major role in providing essential data used to build theoretical models capable of being used further in chemical engineering applications. Heats of mixing, heats of interaction, and heats of dilution constitute the primary data to be measured. After a short review of the thermodynamic formalism and basic relations, the state of the art in solution calorimetry to determine the above heats is described. For an in-depth study of molecular interactions, the pressure as well as the temperature dependence of these thermodynamic properties must be documented. The thermophysical properties that are the second derivatives of the Gibbs energy with respect to temperature and pressure are of paramount importance since they can be related directly to the molecular level, opening windows to molecular thermodynamics. Scanning transitiometry, which can provide experimentally all the thermophysical properties, is described in detail. I give from my personal march in the field a view of the most recent developments in experimental techniques including their extensions to operate over extended temperature and pressure ranges. Selected striking results in pure liquids and mixtures, and in polymer systems, serve to illustrate the role of well-designed experimental techniques in providing exclusive data of the best quality. The aim was indeed to stress also the pivotal role and impetus of Robert H. Wood in modern chemical thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Grolier, J.-P.E.: Fluid phase calorimetry and more: a long-time relationship with chemical thermodynamics. Thermochim. Acta 300, 149–157 (1997)

    Article  CAS  Google Scholar 

  2. Fontaine, J.C., Grolier, J.-P.E., Kehiaian, H.V., Sosnkowska-Kehiaian, K., Wormald, C.J.: Binary gaseous, liquid, near-critical, and supercritical systems of nonelectrolytes. In: Landolt–Börnstein Physical Chemistry. Thermodynamic Properties, Springer, Berlin, Germany, 242 pp. (2005); ISBN:978-3-540-28004-9

  3. Ott, J.B., Stouffer, C.E., Cornett, G.V., Woodfield, B.F., Che, G.Q., Christensen, J.J.: Excess enthalpies for (ethanol + water) at 398.15, 423.15, 448.15, and 473.15 and at pressures of 5 and 15 MPa. Recommendations for choosing (ethanol + water) as a H Em reference mixture. J. Chem. Thermodyn. 19, 337–348 (1987)

    Article  CAS  Google Scholar 

  4. Benson, G.C., D’Arcy, P.J., Kiyohara, O.: Thermodynamics of aqueous mixtures of nonelectrolytes. Isobaric heat capacities of water–n-alcohol mixtures at 25 °C. J. Solution Chem. 9, 931–938 (1980)

    Article  CAS  Google Scholar 

  5. Grolier, J.-P.E., Wilhelm, E.: Excess volumes and excess heat capacities of water + ethanol at 298.15 K. Fluid Phase Equil. 6, 283–287 (1981)

    Article  CAS  Google Scholar 

  6. Wilhelm, E., Grolier, J.-P.E.: Heat capacities and related properties of liquid mixtures. In: Wilhelm, E., Letcher, T.M. (eds.) Heat Capacities: Liquids, Solutions and Vapours, pp. 54–85. The Royal Society of Chemistry/IACT&IUPAC, Cambridge (2010)

    Chapter  Google Scholar 

  7. Marsh, K.N., Richards, A.E.: Excess volumes for ethanol + water mixtures at 10-K intervals from 278.15 to 338.15 K. Aust. J. Chem. 33, 2121–2131 (1980)

    Article  CAS  Google Scholar 

  8. Ott, J.B., Stouffer, C.E., Cornett, G.V., Woodfield, B.F., Wirthlin, R.C., Christensen, J.J., Deiters, U.K.: Excess enthalpies for (ethanol + water) at 298.15 K and pressures of 0.4, 5, 10, and 15 MPa. J. Chem. Thermodyn. 18, 1–12 (1986)

    Article  CAS  Google Scholar 

  9. McGlashan, M.L.: Chemical Thermodynamics. Academic Press, London (1979)

    Google Scholar 

  10. McGlashan, M.L. In: McCullough, J.P., Scott, D.W. (eds.) Experimental Thermodynamics, Vol. I, Calorimetry of Non-Reacting Systems. Butterworths, London (1968)

  11. Savini, C.G., Winterhalter, D.R., Kovach, L.H., Van Ness, H.C.: Endothermic heats of mixing by isothermal dilution calorimetry. J. Chem. Eng. Data 11, 40–43 (1966)

    Article  CAS  Google Scholar 

  12. Winterhalter, D.R., Van Ness, H.C.: An isothermal dilution calorimeter for exothermic heats of mixing. J. Chem. Eng. Data 11, 189–192 (1966)

    Article  CAS  Google Scholar 

  13. Stokes, R.H., Marsh, K.N., Tomlins, R.P.: An isothermal displacement calorimeter for endothermic enthalpies of mixing. J. Chem. Thermodyn. 1, 211–221 (1969)

    Article  CAS  Google Scholar 

  14. Stokes, R.H.: Isothermal displacement calorimeters. In: Marsh, K.N., O’Hare, P.A.G. (eds.) Solution Calorimetry. Experimental Thermodynamics, vol. IV, pp. 131–159. Blackwell Scientific Publications, London (1994)

    Google Scholar 

  15. Ott, J.B., Wormald, C.J.: Excess enthalpy by flow calorimetry. In: Marsh, K.N., O’Hare, P.A.G. (eds.) Solution Calorimetry. Experimental Thermodynamics, vol. IV, pp. 161–194. Blackwell Scientific Publications, London (1994)

    Google Scholar 

  16. Blandamer, M.J.: Thermodynamic background to isothermal titration calorimetry. In: Ladbury, J.E., Chowdhry, B.Z. (eds.) Biocalorimetry: Applications of Calorimetry in the Biological Sciences, pp. 5–25. Wiley, Chichester (1998)

    Google Scholar 

  17. Thomson, J.A., Ladbury, J.E.: Biocalorimetry 2: Applications of Calorimetry. In: Ladbury, J.E., Doyle, M.L. (eds.) Biological Sciences, pp. 37–58. Wiley, Chichester (2004)

    Google Scholar 

  18. Velazquez-Campoy, A., Leavitt, S.A., Freire, E.: Characterization of protein–protein by isothermal titration calorimetry. In: Fu, H. (ed.) Methods in Molecular Biology: Protein-Protein Interactions: Methods and Protocols, pp. 35–54. Humana Press, Totowa (2004)

    Chapter  Google Scholar 

  19. Grolier, J.-P.E., del Rio, J.M.: On the physical meaning of the isothermal titration calorimetry measurements in calorimeters with full cells. Int. J. Mol. Sci. 10, 5296–5325 (2009)

    Article  CAS  Google Scholar 

  20. Grolier, J.-P.E., del Rio, J.M.: Isothermal titration calorimetry; A thermodynamic interpretation of measurements. J. Chem. Thermodyn. 55, 193–202 (2012)

    Article  CAS  Google Scholar 

  21. Grolier, J.-P.E., del Rio, J.M.:. Isothermal titration calorimetry: Application of the Gibbs–Duhem equation to the study of the relationship between forward and reverse titrations. J. Solution Chem. (included in this Robert. H. Wood special issue)

  22. Corea, M., García, M.J., Padilla, B., del Río, J.M.: Thermodynamics of fractions and its application to the hydration study of the swelling process in functionalized polymer particles. J. Phys. Chem. B 108, 20310–20321 (2004)

    Article  CAS  Google Scholar 

  23. Morgado, J., Aquino-Olivos, M.A., Martínez-Hernández, R., Corea, M., Grolier, J.-P.E., del Río, J.M.: Study of the binding between lysozyme and C10-TAB: Determination and interpretation of the partial properties of protein and surfactant at infinite dilution. Biophys. Chem. 135, 51–58 (2008)

    Article  CAS  Google Scholar 

  24. Morgado, J., Aquino-Olivos, M.A., Martínez-Hernández, R., Grolier, J.-P.E., del Río, J.M.: Thermodynamics of interactions at infinite dilution between asphaltenes and a surfactant or crude oil resins. Energy Fuels 23, 2581–2591 (2009)

    Article  CAS  Google Scholar 

  25. Wilhelm, E.: Calorimetry: Its contributions to molecular thermodynamics of fluids. Thermochim. Acta 69, 1–44 (1983)

    Article  CAS  Google Scholar 

  26. Wilhelm, E.: Heat capacities, isothermal compressibilities and related quantities of fluids. In: Tachoire, H. (ed.) Les Capacités Calorifiques des Systèmes Condensés, pp. 138–163. Société Française de Chimie, Marseille (1987)

    Google Scholar 

  27. Wilhelm, E.: Heat capacities: introduction, concepts and selected applications. In: Wilhelm, E., Letcher, T. (eds.) Heat Capacities. Liquids, Solutions and Vapours, pp. 1–27. The Royal Society of Chemistry, Cambridge (2010)

    Google Scholar 

  28. Grolier, J.-P.E.: Heat capacity of organic liquids. In: Marsh, K.N., O’Hare, P.A.G. (eds.) Solution Calorimetry. Experimental Thermodynamics, vol. IV, pp. 43–75. Blackwell Scientific Publications/IUPAC, Oxford (1994)

    Google Scholar 

  29. Van Ness, H.C., Abbott, M.M.: Classical Thermodynamics of Nonelectrolyte Solutions. McGraw–Hill, New York (1981)

    Google Scholar 

  30. Randzio, S.L.: Scanning transitiometry. Chem. Soc. Rev. 25, 383–392 (1996)

    Article  CAS  Google Scholar 

  31. Randzio, S.L.: State variables in calorimetric investigations: experimental results and their theoretical impact. Thermochim. Acta 300, 29–41 (1997)

    Article  CAS  Google Scholar 

  32. Grolier, J.-P.E., Viallard, A.: Dispositif calorimétrique pour la détermination des chaleurs de mélange de deux liquides. Enthalpie d’excès à 25 °C des mélanges acétate d’éthyle-butanol n et acétate de méthyle-méthanol. J. Chim. Phys. 67, 1582–1587 (1970)

    CAS  Google Scholar 

  33. Anand, S.C., Grolier, J.-P.E., Kiyohara, O., Benson, G.C.: Thermodynamic properties of cyclopentanol + p-dioxane mixtures at 25 °C. Can. J. Chem. 51, 4140–4144 (1973)

    Article  CAS  Google Scholar 

  34. Anand, S.C., Grolier, J.-P.E., Kiyohara, O., Halpin, C.J., Benson, G.C.: Thermodynamic properties of some cyclic alkanes + cyclic alcohols systems at 298.15 K. J. Chem. Eng. Data 20, 184–189 (1975)

    Article  CAS  Google Scholar 

  35. Murakami, S., Benson, G.C.: An isothermal dilution calorimeter for measuring enthalpies of mixing. J. Chem. Thermodyn. 1, 559–572 (1969)

    Article  CAS  Google Scholar 

  36. Picker, P., Jolicoeur, C., Desnoyers, J.E.: Steady state and composition scanning differential flow microcalorimeter. J. Chem. Thermodyn. 1, 469–483 (1969)

    Article  CAS  Google Scholar 

  37. Grolier, J.-P.E., Benson, G.C., Picker, P.: Enthalpies of mixing of organic liquids measured directly as a function of composition by means of scanning dynamic flow microcalorimetry. J. Chem. Thermodyn. 7, 89–95 (1975)

    Article  CAS  Google Scholar 

  38. Picker, P., Leduc, P.-A., Philip, P.R., Desnoyers, J.E.: Heat capacity of solutions by flow microcalorimetry. J. Chem. Thermodyn. 3, 631–642 (1971)

    Article  CAS  Google Scholar 

  39. Grolier, J.-P.E., Benson, G.C., Picker, P.: Simultaneous measurements of heat capacities and densities of organic liquid mixtures. J. Chem. Eng. Data 20, 243–246 (1975)

    Article  CAS  Google Scholar 

  40. Picker, P., Tremblay, E., Jolicoeur, C.: A high precision digital readout flow densimeter for liquids. J. Solution Chem. 3, 377–384 (1974)

    Article  CAS  Google Scholar 

  41. Smith-Magowan, D., Wood, R.H.: Heat capacity of aqueous sodium chloride from 320 to 600 K measured with a new flow calorimeter. J. Chem. Thermodyn. 13, 1047–1073 (1981)

    Article  CAS  Google Scholar 

  42. Carter, R.W., Wood, R.H.: Calibration and sample-measurement techniques for flow heat-capacity calorimeters. J. Chem. Thermodyn. 23, 1037–1056 (1991)

    Article  CAS  Google Scholar 

  43. Majer, V., Crovetto, R., Wood, R.H.: A new version of vibrating-tube flow densimeter for measurements at temperatures up to 730 K. J. Chem. Thermodyn. 23, 333–344 (1991)

    Article  CAS  Google Scholar 

  44. Wood, R.H., Quint, J.R., Grolier, J.-P.E.: Thermodynamics of a charged sphere in a compressible dielectric fluid. A modification of the Born equation to include the compressibility of the solvent. J. Phys. Chem. 85, 3944–3949 (1981)

    Article  CAS  Google Scholar 

  45. Albert, H.J., Gates, J.A., Wood, R.H., Grolier, J.-P.E.: Densities of toluene, of butanol, and of their binary mixtures from 298 K to 400 K, and from 0.5 to 20.0 MPa. Fluid Phase Equil. 20, 321–330 (1985)

    Article  CAS  Google Scholar 

  46. Grolier, J.-P.E., Spitzer, J.J., Wood, R.H., Tasker, I.R.: Freezing temperatures and enthalpies of dilution of aqueous solutions of some amides. Gibbs energies and enthalpies of interaction of the N, N-dimethylamide group in aqueous solutions. J. Solution Chem. 14, 393–405 (1985)

    Article  CAS  Google Scholar 

  47. Gates, J.A., Wood, R.H., Cobos, J.C., Casanova, C., Roux, A.H., Roux-Desgranges, G., Grolier, J.-P.E.: Densities and heat capacities of 1-butanol + n-decane from 298 K to 400 K. Fluid Phase Equil. 27, 137–151 (1986)

    Article  CAS  Google Scholar 

  48. Coxam, J.-Y., Quint, J.R., Grolier, J.-P.E.: Modification of a Setaram C-80 calorimeter for measuring heat capacities of liquids at temperatures up to 548 K and pressures up to 20 MPa. J. Chem. Thermodyn. 23, 1075–1083 (1991)

    Article  CAS  Google Scholar 

  49. Mathonat, C., Hynek, V., Majer, V., Grolier, J.-P.E.: Measurements of excess enthalpies at high temperature and pressure using a new type of mixing unit. J. Solution Chem. 23, 1161–1182 (1994)

    Article  CAS  Google Scholar 

  50. Hynek, V., Degrange, S., Polednicek, M., Majer, V., Quint, J.R., Grolier, J.-P.E.: Combined flow-mixing power-compensation calorimeter and vibrating tube densimeter for measurements at superambient conditions. J. Solution Chem. 28, 631–666 (1999)

    Article  CAS  Google Scholar 

  51. Randzio, S.L.: Scanning calorimeters controlled by an independent thermodynamic variable: Definition and some metrological problems. Thermochim. Acta 89, 215–241 (1985)

    Article  CAS  Google Scholar 

  52. Randzio, S.L., Grolier, J.-P.E., Quint, J.R.: An isothermal scanning calorimeter controlled by linear pressure variations from 0.1 MPa to 400 MPa. Calibration and comparison with the piezothermal technique. Rev. Sci. Instrum. 65, 960–965 (1994)

    Article  CAS  Google Scholar 

  53. Randzio, S.L., Grolier, J.-P.E., Zaslona, J., Quint, J.R.: Procédé et dispositif pour l’étude de transitions physicochimiques et leurs applications. French patent 91 09227

  54. Randzio, S.L., Grolier, J.-P.E., Zaslona, J., Quint, J.R.: Sposόbiurządzenie do badania przemian fizykochemicznych, Polish patent 295285

  55. http://www.transitiometry.com

  56. Randzio, S.L., Grolier, J.-P.E., Quint, J.R.: Thermomechanical coefficients in the vicinity of the critical point by scanning transitiometry. High Temp.-High Press. 30, 645–649 (1998)

    Article  CAS  Google Scholar 

  57. Randzio, S.L., Grolier, J.-P.E., Quint, J.R., Hansen, L.D., Lewis, E.A., Eatough, D.J.: n-Hexane as a model for compressed simple liquids. Intern. Journal of Thermophys. 15, 415–441 (1994)

    Article  CAS  Google Scholar 

  58. Alba, C., Ter Minassian, L., Denis, A., Soulard, A.: Reduction into a rational fraction of a thermodynamic property of the liquid state: Experimental determinations in the case of CO2 and n-butane. Extension to the other properties. J. Chem. Phys. 82, 384–393 (1985)

    Article  CAS  Google Scholar 

  59. Deiters, U.K., Randzio, S.L.: The equation of state for molecules with shifted Lennard-Jones pair potential. Fluid Phase Equilib. 103, 199–212 (1995)

    Article  CAS  Google Scholar 

  60. Randzio, S.L., Grolier, J.-P.E., Quint, J.R.: Thermophysical properties of 1-hexanol over the temperature range from 303 K to 503 K and at pressures from the saturation line to 400 MPa. Fluid Phase Equilib. 110, 341–359 (1995)

    Article  CAS  Google Scholar 

  61. Grolier, J.-P.E., Randzio, S.L.: Pressure effects on the thermodynamic properties of (n-hexane + 1 hexanol) binary mixtures. Fluid Phase Equilib. 133, 35–44 (1997)

    Article  CAS  Google Scholar 

  62. Chorążewski, M., Degal, F., Sawaya, T., Mokbel, I., Grolier, J.-P.E., Jose, J.: Thermophysical properties of Normafluid (ISO 4113) over wide pressure and temperature ranges. Fuel 105, 440–450 (2013)

    Article  Google Scholar 

  63. Chorążewski, M., Grolier, J.-P.E., Randzio, S.L.: Isobaric thermal expansivities of toluene measured by scanning transitiometry at temperatures from (243 to 423) K and pressures up to 200 MPa. J. Chem. Eng. Data 55, 5489–5496 (2010)

    Article  Google Scholar 

  64. Randzio, S.L.: An attempt to explain thermal properties of liquids at high pressures. Phys. Lett. 117, 473–476 (1986)

    Article  CAS  Google Scholar 

  65. Randzio, S.L., Deiters, U.K.: Thermodynamic testing of equations of state of dense simple liquids. Ber. Bunsenges. Phys. Chem. 99, 1179–1186 (1995)

    Article  CAS  Google Scholar 

  66. del Rio, J.M., Santillan, R., Grolier, J.-P.E., Jimenez, F., Corea, M.: A thermodynamic method to study the interaction between NaOH and highly carboxylate polymeric particles. J. Solution Chem. (included in this Robert. H. Wood special issue)

  67. Rodier-Renaud, L., Randzio, S.L., Grolier, J.-P.E., Quint, J., Jarrin, J.R., : Isobaric thermal expansivities of crystalline polyethylenes over the pressure range from 0.1 MPa to 300 MPa and over the temperature range from 303 K to 393 K. J. Polym. Sci. B. Polym. Phys. 34, 1229–1242 (1996)

    Article  CAS  Google Scholar 

  68. Pastine, D.J.: P, V, T equation of state for polyethylene. J. Chem. Phys. 49, 3012–3022 (1968)

    Article  CAS  Google Scholar 

  69. Randzio, S.L., Grolier, J.-P.E.: Supercritical transitiometry of polymers. Anal. Chem. 70, 2327–2330 (1998)

    Article  CAS  Google Scholar 

  70. Ribeiro, M., Pison, L., Grolier, J.-P.E.: Modification of polystyrene glass transition by high pressure methane. Polymer 42, 1653–1661 (2001)

    Article  CAS  Google Scholar 

  71. Grolier, J.-P.E., Dan, F., Boyer, S.A.E., Orlowska, M., Randzio, S.L.: The use of scanning transitiometry to investigate thermodynamic properties of polymeric systems over extended T and p ranges. Int. J. Thermophys. 25, 297–318 (2004)

    Article  CAS  Google Scholar 

  72. Boyer, S.A.E., Grolier, J.-P.E.: Modification of the glass transitions of polymers by high pressure gas solubility. Pure Appl. Chem. 77, 593–603 (2005)

    Article  CAS  Google Scholar 

  73. Hilic, S., Padua, A.A.H., Grolier, J.-P.E.: Simultaneous measurement of the solubility of gases in polymers and of the associated volume change. Rev. Sci. Instrum. 71, 4236–4241 (2000)

    Article  CAS  Google Scholar 

  74. Hilic, S., Boyer, S.A.E., Padua, A.A.H., Grolier, J.-P.E.: Simultaneous measurement of the solubility of nitrogen and carbon dioxide in polystyrene and of the associated polymer swelling. J. Pol. Sci. B: Pol. Phys. 39, 2063–2070 (2001)

    Article  CAS  Google Scholar 

  75. Boyer, S.A.E., Grolier, J.-P.E.: Simultaneous measurement of the concentration of a supercritical gas absorbed in a polymer and of the concomitant change in volume of the polymer. The coupled VW-pVT technique revisited. Polymer 46, 3737–3747 (2005)

    Article  CAS  Google Scholar 

  76. Boyer, S.A.E., Klopffer, M.-H., Martin, J., Grolier, J.-P.E.: Supercritical gas–polymer interactions with applications in the petroleum industry. Determination of thermophysical properties. J. Appl. Polym. Sci. 103, 1706–1722 (2006)

    Article  Google Scholar 

  77. Grolier, J.-P.E., Randzio, S.L.: Simple gases to replace non-environmentally friendly polymer foaming agents. A thermodynamic investigation. J. Chem. Thermodyn. 46, 42–56 (2012); invited paper, in special issue “Sustainable Chemical Processes or Environmental Friendly Processes”. doi:10.1016/j.jct.2011.07.017

  78. Brite Euram Program No. 97-4154 “Interactions between gases and polymers at high pressures. Polymer foaming process”. Project POLYFOAM by international consortium, coordinated by Grolier, J.-P.E. (partners being Blaise Pascal University; French Institute of Petroleum, Elf-Atochem, France; Aristotle University, Company Fibran, Greece; Institute of Physical Chemistry Academy of Sciences, Poland)

  79. Grolier, J.-P.E.: Advanced experimental techniques in polymer thermodynamics (2004 Rossini Lecture). Pure Appl. Chem. 77, 1297–1315 (2005)

    Article  CAS  Google Scholar 

  80. Grolier, J.-P.E., Boyer, S.A.E.: Gas–polymer interactions: Key thermodynamic data and thermophysical properties. Adv. Polymer Sci. 238, 137–177 (2011)

    CAS  Google Scholar 

  81. Coiffard, L., Grolier, J.-P.E., Eroshenko, V.: Thermomechanics of the movement of interfaces in heterogeneous lyophobic systems. AIChE J. 51, 1246–1257 (2005)

    Article  CAS  Google Scholar 

  82. Ievtusheko, O.V., Eroshenko, V.A., Grosu, Y.G., Nedelec, J.-M., Grolier, J.-P.E.: Evolution of energetic characteristics of silicalite-1 + water repulsive clathrates in a wide temperature range. Phys. Chem. Chem. Phys. 15, 4451–4457 (2013)

    Article  Google Scholar 

  83. Grosu, Y., Ievtushenko, O., Eroshenko, V., Nedelec, J.-M., Grolier, J.-P.E.: Water intrusion/extrusion in hydrophobized mesoporous silica gel in a wide temperature range: Capillarity, bubble nucleation and line tension effects. Colloids Surf. A: Physicochem. Eng. Aspects 441, 549–555 (2014)

    Article  CAS  Google Scholar 

  84. Stachowiak, Ch., Grolier, J.-P.E., Randzio, S.L.: Transitiometric investigation of asphaltenic fluids under in-well temperature and pressure conditions. Energy Fuels 15, 1033–1037 (2001)

    Article  CAS  Google Scholar 

  85. Aquino-Olivos, M.A., Grolier, J.-P.E., Randzio, S.L., Aguirre-Gutierrez, A.J., Garcia-Sanchez, F.: Determination of the asphaltene precipitation envelope and bubble-point pressure for a Mexican crude oil by scanning transitiometry. Energy Fuels 27, 1212–1222 (2013)

    Article  CAS  Google Scholar 

  86. Blaisot, J.-B., Daridon, J.-L., Garsi, C., Gastaldi, P., Grolier, J.-P.E., Honnet, S., Loyer, B., Manuelli, P., Méès, L., Mokbel, I., Réveillé, B., Saliba, R., Zellat, M.: NADIA_bio: New Advanced Diagnosis for Diesel Injection Analysis and Bio Fuels. A federative project around hydraulics of CR (Common Rail) systems. Diesel Powertrain International Conference SIA Rouen, 06/05–06/2012

Download references

Acknowledgments

The author particularly expresses his thanks to the reviewers for their comments, suggestions and proposed modifications which have all been incorporated in the revised version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre E. Grolier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grolier, JP.E. From Solutions to Polymers: A High Temperature–High Pressure Journey in Experimental Thermodynamics. J Solution Chem 44, 1090–1120 (2015). https://doi.org/10.1007/s10953-015-0302-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0302-8

Keywords

Navigation