Skip to main content

Advertisement

Log in

Real-time risk assessment in seismic early warning and rapid response: a feasibility study in Bishkek (Kyrgyzstan)

  • Original Article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

Earthquake early warning systems (EEWS) are considered to be an effective, pragmatic, and viable tool for seismic risk reduction in cities. While standard EEWS approaches focus on the real-time estimation of an earthquake’s location and magnitude, innovative developments in EEWS include the capacity for the rapid assessment of damage. Clearly, for all public authorities that are engaged in coordinating emergency activities during and soon after earthquakes, real-time information about the potential damage distribution within a city is invaluable. In this work, we present a first attempt to design an early warning and rapid response procedure for real-time risk assessment. In particular, the procedure uses typical real-time information (i.e., P-wave arrival times and early waveforms) derived from a regional seismic network for locating and evaluating the size of an earthquake, information which in turn is exploited for extracting a risk map representing the potential distribution of damage from a dataset of predicted scenarios compiled for the target city. A feasibility study of the procedure is presented for the city of Bishkek, the capital of Kyrgyzstan, which is surrounded by the Kyrgyz seismic network by mimicking the ground motion associated with two historical events that occurred close to Bishkek, namely the 1911 Kemin (M = 8.2; ±0.2) and the 1885 Belovodsk (M = 6.9; ±0.5) earthquakes. Various methodologies from previous studies were considered when planning the implementation of the early warning and rapid response procedure for real-time risk assessment: the Satriano et al. (Bull Seismol Soc Am 98(3):1482–1494, 2008) approach to real-time earthquake location; the Caprio et al. (Geophys Res Lett 38:L02301, 2011) approach for estimating moment magnitude in real time; the EXSIM method for ground motion simulation (Motazedian and Atkinson, Bull Seismol Soc Am 95:995–1010, 2005); the Sokolov (Earthquake Spectra 161: 679–694, 2002) approach for estimating intensity from Fourier amplitude spectra; and the Tyagunov et al. (Nat Hazard Earth Syst Sci 6:573–586, 2006) approach for risk computation. Innovatively, all these methods are jointly applied to assess in real time the seismic risk of a particular target site, namely the city of Bishkek. Finally, the site amplification and vulnerability datasets considered in the proposed methodology are taken from previous studies, i.e., Parolai et al. (Bull Seismol Soc Am, 2010) and Bindi et al. (Soil Dyn Earthq Eng, 2011), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abrakhmatov K, Havenith H-B, Delvaux D, Jongmans D, Trefois P (2003) Probabilistic PGA and Arias intensity maps of Kyrgyzstan (Central Asia). J Seismol 7:203–220

    Article  Google Scholar 

  • Allen RM, Kanamori H (2003) The potential for earthquake early warning in Southern California. Science 300:786–789. doi:10.1126/science.1080912

    Article  Google Scholar 

  • Allen RM, Gasparini P, Kamigaichi O, Böse M (2009) The status of earthquake early warning around the world: an introductory overview. Seismol Res Lett 80(5):682–693. doi:10.1785/gssrl.80.5.682

    Article  Google Scholar 

  • Allen TI, Wald DJ, Worden CB (2012) Intensity attenuation for active crustal regions. J Seismol. doi:10.1007/s10950-012-9278-7

  • Bindi D, Mayfiled M, Parolai S, Tyagunov S, Begaliev UT, Abdrakhmatov K, Moldobekov B, Zschau J (2011) Towards an improved seismic risk scenario for Bishkek, Kyrgyz Republic. Soil Dyn Earthq Eng. doi:10.1016/j.soildyn.2010.08.009

  • Boore DM (2009) Comparing stochastic point-source and finite-source ground-motion simulations: SMSIM and EXSIM. Bull Seism Soc Am 99:3202–3216. doi:10.1785/0120090056

    Article  Google Scholar 

  • Borchert RD (1970) Effects of local geology on ground motion near San Francisco Bay. Bull Seismol Soc Am 60:29–61

    Google Scholar 

  • Bragin VD, Willemann RJ, Matix AI, Dudinskih RR, Vernon F, Offield G (2007) American Geophysical Union, Spring Meeting 2007, abstract #S23A-12

  • Bullen ME, Burbank DW, Garver JJ, Adbrakhmatov KY (2001) Late Cenozoic tectonic evolution of the northwestern Tien Shan: new age estimates for the initiation of the mountain building. Geol Soc Am Bull 113:1544–1559

    Article  Google Scholar 

  • Caprio M, Lancieri M, Cua GB, Zollo A, Wiemer S (2011) An evolutionary approach to real-time moment magnitude estimation via inversion of displacement spectra. Geophys Res Lett 38:L02301. doi:10.1029/2010GL0454403

    Article  Google Scholar 

  • Colombi M, Crempien J, Crowley H, Erduran E, Liu H, Lopez M et al (2010) Evaluation of seismic risk software for GEM, GEM technical report 9. GEM Foundation, Pavia, p 2010

    Google Scholar 

  • Crotwell HP, Owens TJ, Ritsema J (1999) The TauP toolkit: flexible seismic travel-time and ray-path utilities. Seismol Res Lett 70:154–160

    Article  Google Scholar 

  • Cua G, Heaton T (2007) The virtual seismologist (VS) method: a Bayesian approach to earthquake early warning. In: Gasparini P, Manfredi G, Zschau J (eds) Earthquake early warning systems. Springer, Berlin. doi:10.1007/978-3-540-72241-0_7

    Google Scholar 

  • Dolce M, Marino M, Vona M (2003) Earthquake damage scenarios of the building stock of potenza (Southern Italy) including site effects. Bull Earthq Eng 1(1):115–140. doi:10.1023/A:1024809511362

    Article  Google Scholar 

  • Erdik M, Fahjan Y, Ozel O, Alcik H, Mert A, Gul M (2003) Istanbul earthquake rapid response and the early warning system. Bull Earthq Eng 1(1):157–163. doi:10.1023/A:1024813612271

    Article  Google Scholar 

  • Erdik M, Rashidov T, Safak E, Turdukulov A (2005) Assessment of seismic risk in Tashkent, Uzbekistan, and Bishek, Kyrgyz Republic. Soil Dyn Earthq Eng 25:473–486

    Article  Google Scholar 

  • Festa G, Zollo A, Lancieri M (2008) Earthquakemagnitude estimation fromearly radiated energy. Geophys Res Lett 35(22):L22307. doi:10.1029/2008GL0355

    Article  Google Scholar 

  • Font Y, Kao H, Lallemand S, Liu C-S, Chiao L-Y (2004) Hypocentral determination offshore eastern Taiwan using maximum intersection method. Geophys J Int 158:655–675

    Article  Google Scholar 

  • Gasparini P, Manfredi G, Zschau J (2011) Earthquake early warning as a tool for improving society’s resilience and crisis response. Soil Dyn Earthq Eng. doi:10.1016/j.soildyn.2010.09.004

  • Geiger D, Verma T, Pearl J (1990) Identifying independence in Bayesian networks. Networks 20:507–534

    Article  Google Scholar 

  • Gruenthal G (1998) European macroseismic scale 1998 (EMS-98). Cahiers du Centre Europeen de Geodynamique et de Seismologie 1998, 15, 99. Luxembourg

  • Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84(B5):2348–2350

    Article  Google Scholar 

  • Herrero, Bernard (1994) Modeling directivity of heterogeneous earthquake ruptures. Bull Seismol Soc Am 86(4):1149–1160

    Google Scholar 

  • Horiuchi S, Negishi H, Abe K, Kamimura A, Fujinawa Y (2005) An automatic processing system for broadcasting earthquake alarms. Bull Seismol Soc Am 95:708–718

    Article  Google Scholar 

  • Housner GW (1952) Spectrum intensities of strong motion earthquakes. In: The proceedings of the symposium of earthquake and blast effects on structures. Earthquake Engineering Research Institute, Los Angeles

  • Iervolino I (2011) Performance-based earthquake early warning. Soil Dyn Earthq Eng. doi:10.1016/j.soildyn.2010.07.010

  • Januzakov KJ, Omuraliev M, Omuralieva A, Ilyasov BI, Grebennikova VV (2003) Strong earthquakes of the Tien Shan (within the Kyrgyzstan territory and adjacent regions of the countries of Central Asia). Ilim, Bishkek, p 216, 5-8355-1335-6

    Google Scholar 

  • Kalmetieva ZA, Mikolaichuk AV, Moldobekov BD, Meleshko AV, Jantaev MM, Zubovich AV (2009) Atlas of earthquakes in Kyrgyzstan. United Nations International Strategy for Disaster Reduction Secretariat Office in Central Asia (UNISDR), Bishkek–CAIAG–2009. ISBN 978-9967-25-829-7

  • Kanamori H (2005) Real-time seismology and earthquake damage mitigation. Ann Rev Earth Planet Sci 33:195–214. doi:10.1146/annurev.earth.33.092203.122626

    Article  Google Scholar 

  • Kondorskaya NV, Shebalin NV (1982) In: Kondorskaya NV, Shebalin NV (eds) New catalog of strong earthquakes in the U.S.S.R. from ancient times through 1977. National Oceanic and Atmospheric Administration, Boulder, p 608

    Google Scholar 

  • Lomax A (2005) A reanalysis of the hypocentral location and related observations for the great 1906 California earthquake. Bull Seismol Soc Am 95:861–877

    Article  Google Scholar 

  • Motazedian D, Atkinson GM (2005) Stochastic finite-fault modeling based on a dynamic corner frequency. Bull Seismol Soc Am 95:995–1010

    Article  Google Scholar 

  • Musson RMW, Gruenthal G, Stucchi M (2009) The comparison of macroseismic intensity scales. J Seismol. doi:10.1007/s10950-10009-19172-10950

  • Nakamura Y (1988) On the urgent earthquake detection and alarm system (UrEDAS). In: Proceedings of Ninth World Conference on Earthquake Engineering, Tokyo, Kyoto, Japan

  • Parolai S, Orunbayev S, Bindi D, Strollo A, Usupayev S, Picozzi M et al (2010) Site assessment in Bishkek (Kyrgyzstan) using earthquake and noise recording data. Bull Seismol Soc Am. doi:10.1785/0120100044

  • Pearl J (1985) Bayesian networks: a model of self-activated memory for evidential reasoning (UCLA Technical Report CSD-850017). Proceedings of the 7th Conference of the Cognitive Science Society. University of California, Irvine, pp 329–334

    Google Scholar 

  • Pittore M, Wieland M, Bindi D, Parolai S, Zschau J (2011) Towards a rapid, integrated, multi-scale assessment of earthquake risk: a case study in Central Asia. Geophysical Research Abstracts, 13, EGU Joint Assembly

  • Pittore M, Wieland M, Parolai S, Zschau J (2012) Towards a rapid probabilistic seismic vulnerability assessment using satellite and ground-based remote sensing. Natural Hazards, Special Issue in “Remote Sensing contributing to mapping earthquake vulnerability and effects” (in press)

  • Rydelek P, Pujol J (2004) Real-time seismic warning with 2-station subarray. Bull Seism Soc Am 94:1546–1550

    Article  Google Scholar 

  • Satriano C, Lomax A, Zollo A (2008) Real-time evolutionary earthquake location for seismic early warning. Bull Seismol Soc Am 98(3):1482–1494. doi:10.1785/0120060159

    Article  Google Scholar 

  • Satriano C, Wu Y-M, Zollo A, Kanamori H (2011) Earthquake early warning: concepts, methods and physical grounds. Soil Dyn Earthq Eng. doi:10.1016/j.soildyn.2010.07.007

  • Sokolov VY (2002) Seismic intensity and Fourier acceleration spectra: revised relationship. Earthquake Spectra, 161

  • Sokolov VY, Chernov YK (1998) On the correlation of seismic intensity with Fourier amplitude spectra. Earthq Spectra 14:679–694

    Article  Google Scholar 

  • Tyagunov S, Gruenthal G, Wahlstrom R, Stempniewski L, Zschau J (2006) Seismic risk mapping for Germany. Nat Hazard Earth Syst Sci 6:573–586

    Article  Google Scholar 

  • Vernon F (1992) Kyrghizstan seismic telemetry network, IRIS newsletter, p. 7–9, XI, 1

  • Vernon F (1994) The Kyrgyz seismic network, IRIS newsletter, p. 7–8, XIII, 2

  • Wang R (1999) A simple orthonormalization method for stable and efficient computation of Green’s functions. Bull Seismol Soc Am 89(3):733–741

    Google Scholar 

  • Weisstein EW (1999) Voronoi polygon, in MathWorld: a Wolfram Web Resource, http://mathworld.wolfram.com/VoronoiPolygon.html. Last accessed March 2008

  • Wieland M, Pittore M, Parolai S, Zschau J, Moldobekov B, Begaliev U (2012) Estimating building inventory for rapid seismic vulnerability assessment: towards an integrated approach based on multi-source imaging. Soil Dyn Earthq Eng 36:70–83

    Article  Google Scholar 

  • Worden CB, Gerstenberger MC, Rhoades DA, Wald DJ (2012) Probabilistic relationships between ground-motion parameters and modified Mercalli intensity in California. Bull Seismol Soc Am 102(1):204–221. doi:10.1785/0120110156

    Article  Google Scholar 

  • Wu YM, Kanamori H (2008) Development of an earthquake early warning system using real-time strong motion signals. Sensors 8(1):1–9. doi:10.3390/s801000

    Article  Google Scholar 

  • Wu Y-M, Zhao L (2006) Magnitude estimation using the first three seconds P-wave amplitude in earthquake early warning. Geophys Res Lett 33:L16312. doi:10.1029/2006GL026871

    Article  Google Scholar 

  • Yamamoto S, Rydelek P, Horiuchi S, Wu C, Nakamura H (2008) On the estimation of seismic intensity in earthquake early warning systems. Geophys Res Lett 35(7):L07302. doi:10.1029/2007GL033034

    Article  Google Scholar 

  • Zollo A, Lancieri M, Nielsen S (2006) Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion records. Geophys Res Lett 33:L23312. doi:10.1029/2006GL027795

    Article  Google Scholar 

  • Zollo A, Amoroso O, Lancieri M, Wu Y-M, Kanamori H (2010) A threshold-based earthquake early warning using dense accelerometer networks. Geophys J Int 183:963–974. doi:10.1111/j.1365-246X.2010.04765.x

    Article  Google Scholar 

Download references

Acknowledgments

The work undertaken in the paper was supported by Georisiken im Globalen Wandel (PROGRESS) and Earthquake Model Central Asia (EMCA) projects. Comments from two anonymous reviewers and from the editor A. Oth are grateful acknowledged. Discussions with K. Fleming, who also revised the English, improved the exposition of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Picozzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Picozzi, M., Bindi, D., Pittore, M. et al. Real-time risk assessment in seismic early warning and rapid response: a feasibility study in Bishkek (Kyrgyzstan). J Seismol 17, 485–505 (2013). https://doi.org/10.1007/s10950-012-9332-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-012-9332-5

Keywords

Navigation