Skip to main content
Log in

Anisotropic Superconducting Gap in Optimally Doped Iron–Based Material

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We offer a comprehensive optical investigation of the optimally hole-doped Ba0.6K0.4Fe2As2 over a broad spectral range, as a function of temperature and of tunable applied stress, which acts as an external symmetry breaking field. We show that there is a large electronic nematicity at optimal doping which extends right under the superconducting dome and implies an anisotropy of the superconducting energy gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. As in refs. [16] and [17], we refer here to the He gas pressure inside the volume of the bellows (pbellows): the effective stress felt by the sample (psample) depends on its size and thickness, so that pbellows = 0.1 bar corresponds to an effective uniaxial stress of about \(p_{\text {sample}} \sim \) 2.5 MPa on our crystals. It has been widely established that an effective stress of at least 10 MPa is enough to reveal the underlying symmetry-breaking [2].

References

  1. Chu, J.-H., Analytis, J.G., De Greve, K., McMahon, P.L., Islam, Z., Yamamoto, Y., Fisher, I.R.: Science 329, 824 (2010)

    Article  ADS  Google Scholar 

  2. Fisher, I.R., Degiorgi, L., Shen, Z.X.: Rep. Prog. Phys. 74, 124506 (2011)

    Article  ADS  Google Scholar 

  3. Blomberg, E.C., Tanatar, M.A., Kreyssig, A., Ni, N., Thaler, A., Rongwei Hu, S.L., Bud’ko, P.C., Canfield, A.I., Goldman, R.: Prozorov: Phys. Rev. B 83, 134505 (2011)

    ADS  Google Scholar 

  4. Blomberg, E.C., Kreyssig, A., Tanatar, M.A., Fernandes, R.M., Kim, M.G., Thaler, A., Schmalian, J., Bud’ko, S.L., Canfield, P.C., Goldman, A.I., Prozorov, R.: Phys. Rev. B 85, 144509 (2012)

    Article  ADS  Google Scholar 

  5. Chu, J.-H., Kuo, H.-H., Analytis, J.G., Fisher, I.R.: Science 337, 710 (2012)

    Article  ADS  Google Scholar 

  6. Kuo, H.-H., Shapiro, M.C., Riggs, S.C., Fisher, I.R.: Phys. Rev. B 88, 085113 (2013)

    Article  ADS  Google Scholar 

  7. Kuo, H.-H., Chu, J.-H., Palmstrom, J.C., Kivelson, S.A., Fisher, I.R.: Science 352, 958 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  8. Metlitski, M.A., Mross, D.F., Sachdev, S., Senthil, T.: Phys. Rev. B 91, 115111 (2015)

    Article  ADS  Google Scholar 

  9. Lederer, S., Schattner, Y., Berg, E., Kivelson, S.A.: Phys. Rev. Lett 114, 097001 (2015)

    Article  ADS  Google Scholar 

  10. Nie, L., Tarjus, G., Kivelson, S.A: . PNAS 111, 7980 (2014)

    Article  ADS  Google Scholar 

  11. Fujita, K., Kim, C.K., Lee, I., Lee, J., Hamidian, M.H., Firmo, I.A., Mukhopadhyay, S., Eisaki, H., Uchida, S., Lawler, M.J., Kim, E.-A., Davis, J.C.: Science 344, 612 (2014)

    Article  ADS  Google Scholar 

  12. Fradkin, E, Kivelson, SA, Tranquada, J.M.: Rev. Mod. Phys. 87, 457 (2015). and references therein

    Article  ADS  Google Scholar 

  13. Nakajima, M., Liang, T., Ishida, S., Tomioka, Y., Kihou, K., Lee, C.H., Iyo, A., Eisaki, H., Kakeshita, T., Ito, T., Uchida, S.: PNAS 108, 12238 (2011)

    Article  ADS  Google Scholar 

  14. Nakajima, M., Ishida, S., Tomioka, Y., Kihou, K., Lee, C.H., Iyo, A., Ito, T., Kakeshita, T., Eisaki, H., Uchida, S.: Phys. Rev. Lett. 109, 217003 (2012)

    Article  ADS  Google Scholar 

  15. Ishida, S., Nakajima, M., Liang, T., Kihou, K., Lee, C.H., Iyo, A., Eisaki, H., Kakeshita, T., Tomioka, Y., Ito, T., Uchida, S.: Phys. Rev. Lett. 110, 207001 (2013)

    Article  ADS  Google Scholar 

  16. Mirri, C., Dusza, A., Bastelberger, S., Chu, J.-H., Kuo, H.-H., Fisher, I.R., Degiorgi, L.: Phys. Rev. B 89, 060501(R) (2014). and Supplemental Material therein

    Article  ADS  Google Scholar 

  17. Mirri, C., Dusza, A., Bastelberger, S., Chu, J.-H., Kuo, H.-H., Fisher, I.R., Degiorgi, L.: Phys. Rev. B 90, 155125 (2014)

    Article  ADS  Google Scholar 

  18. Mirri, C., Dusza, A., Bastelberger, S., Chinotti, M., Degiorgi, L., Chu, J.-H., Kuo, H.-H., Fisher, I.R.: Phys. Rev. Lett. 115, 107001 (2015)

    Article  ADS  Google Scholar 

  19. Mirri, C., Dusza, A., Bastelberger, S., Chinotti, M., Chu, J.-H., Kuo, H.-H., Fisher, I.R., Degiorgi, L.: Phys. Rev. B. 93, 085114 (2016)

    Article  ADS  Google Scholar 

  20. Chinotti, M., Pal, A., Degiorgi, L., Böhmer, A. E., Canfield, P.C.: Phys. Rev. B 96, 121112(R) (2017)

    Article  ADS  Google Scholar 

  21. Pal, A., Chinotti, M., Chu, J.-H., Kuo, H.-H., Fisher, I.R., Degiorgi, L.: npj Quant. Mater. 4, 3 (2019)

    Article  ADS  Google Scholar 

  22. Sprau, P.O., Kostin, A., Kreisel, A., Böhmer, A. E., Taufour, V., Canfield, P.C., Mukherjee, S., Hirschfeld, P.J., Andersen, B.M., Seamus Davis, J.C.: Science 357, 75 (2017)

    Article  ADS  Google Scholar 

  23. Kushnirenko, Y.S., Fedorov, A.V., Haubold, E., Thirupathaiah, S., Wolf, T., Aswartham, S., Morozov, I., Kim, T.K., Büchner, B., Borisenko, S.V.: Phys. Rev. B 97, 180501(R) (2018)

    Article  ADS  Google Scholar 

  24. Liu, D., Li, C., Huang, J., Lei, B., Wang, L., Wu, X., Shen, B., Gao, Q., Zhang, Y., Liu, X., Hu, Y., Xu, Y., Liang, A., Liu, J., Ai, P., Zhao, L., He, S., Yu, L., Liu, G., Mao, Y., Dong, X., Jia, X., Zhang, F., Zhang, S., Yang, F., Wang, Z., Peng, Q., Shi, Y., Hu, J., Xiang, T., Chen, X., Xu, Z., Chen, C., Zhou, X.J.: Phys. Rev. X 8, 031033 (2018)

    Google Scholar 

  25. Dressel, M., Grüner, G.: Electrodynamics of Solids. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  26. Dai, Y.M., Xu, B., Shen, B., Wen, H.H., Qiu, X.G., Lobo, R.P.S.M.: Europhys. Lett 104, 47006 (2013)

    Article  ADS  Google Scholar 

  27. Xu, B., Dai, Y.M., Xiao, H., Shen, B., Wen, H.H., Qiu, X.G., Lobo, R.P.S.M.: Phys. Rev. B 96, 115125 (2017)

    Article  ADS  Google Scholar 

  28. Charnukha, A., Dolgov, O.V., Golubov, A.A., Matiks, Y., Sun, D.L., Lin, C.T., Keimer, B., Boris, A.V.: Phys. Rev. B 84, 174511 (2011)

    Article  ADS  Google Scholar 

  29. Tinkham, M.: Introduction to Superconductivity, 2nd edn. McGraw-Hill, New York (1996)

    Google Scholar 

  30. Zimmermann, W., Brandt, E.H., Bauer, M., Seider, E., Genzel, L.: Phys. C 183, 99 (1991)

    Article  ADS  Google Scholar 

  31. Wu, D., Barišić, N., Kallina, P., Faridian, A., Gorshunov, B., Drichko, N., Li, L.J., Lin, X., Cao, G.H., Xu, Z.A., Wang, N.L., Dressel, M.: Phys. Rev. B 81, 100512(R) (2010). and references therein

    Article  ADS  Google Scholar 

  32. Wu, S.-F., Richard, P., Ding, H., Wen, H.-H., Tan, G, Wang, M., Zhang, C., Dai, P., Blumberg, G.: Phys. Rev. B 95, 085125 (2017)

    Article  ADS  Google Scholar 

  33. Böhm, T., Kemper, A.F., Moritz, B., Kretzschmar, F., Muschler, B., Eiter, H.-M., Hackl, R., Devereaux, T.P., Scalapino, D.J., Wen, H.-H.: Phys. Rev. X 4, 041046 (2014)

    Google Scholar 

  34. Dai, Y.M., Xu, B., Shen, B., Xiao, H., Wen, H.H., Qiu, X.G., Homes, C.C., Lobo, R.P.S.M.: Phys. Rev. Lett. 111, 117001 (2013)

    Article  ADS  Google Scholar 

  35. Fanfarillo, L., Giovannetti, G., Capone, M., Bascones, E.: Phys. Rev. B 95, 144511 (2017)

    Article  ADS  Google Scholar 

  36. Chubukov, A.V., Khodas, M., Fernandes, R.M.: Phys. Rev. X 6, 041045 (2016). and references therein

    Google Scholar 

  37. Li, J., Pereira, P.J., Yuan, J., Lv, Y.-Y., Jiang, M.-P., Lu, D., Lin, Z.-Q., Liu, Y.-J., Wang, J.-F., Li, L., Ke, X., Van Tendeloo, G., Li, M.-Y., Feng, H.-L., Hatano, T., Wang, H.-B., Wu, P.-H., Yamaura, K., Takayama-Muromachi, E., Vanacken, J., Chibotaru, L.F., Moshchalkov, V.V.: Nat. Commun. 8, 1880 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank R. Fernandes, M. Schütt, L. Benfatto, L. Fanfarillo, B. Valenzuela, E. Bascones, and A. Chubukov for fruitful discussions.

Funding

This work was financially supported by the Swiss National Science Foundation (SNSF). Work at Stanford University was financially supported by the Department of Energy, Office of Basic Energy Sciences under contract DE-AC02-76SF00515.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Degiorgi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, A., Chinotti, M., Chu, JH. et al. Anisotropic Superconducting Gap in Optimally Doped Iron–Based Material. J Supercond Nov Magn 33, 2313–2318 (2020). https://doi.org/10.1007/s10948-019-05390-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05390-4

Keywords

Navigation