Skip to main content
Log in

Compensation Point Phenomena in a Transverse Ising Antiferromagnet: Unconventional Effects of an Applied Magnetic Field

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The thermal variations of magnetizations in a transverse Ising antiferromagnet consisting of two magnetic (A and B) layers are examined by the use of the effective-field theory with correlations, applying a magnetic field p. Particular attentions are paid to the systems with a compensation point in the zero applied field (p = 0.0), when crystallographically equivalent conditions between the A and B layers are broken. We find some characteristic phenomena, such as the possibility of more than one compensation point induced by a finite applied magnetic field and the thermally induced first-order transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Re, N., Gallo, E., Floriani, C., Miyasaka, H., Matsumoto, N.: Inorg. Chem. 35, 5964 (1996)

    Article  Google Scholar 

  2. Kaneyoshi, T.: Int. J. Mod. Phys. B 29, 1550197–1 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  3. Kaneyoshi, T.: J. Magn Magn. Mater. 406, 83 (2016)

    Article  ADS  Google Scholar 

  4. Kaneyoshi, T.: Phase Tran. 99 (2016). published on line

  5. Kaneyoshi, T., Jascur, M., Fittipaldi, I.P.: Phys. Rev. B 48, 250 (1993)

    Article  ADS  Google Scholar 

  6. Kaneyoshi, T.: Acta Phys. Pol. A 83, 703 (1993)

    Article  Google Scholar 

  7. Zernike, F.: Phys. 7, 565 (1940)

    ADS  Google Scholar 

  8. Neel, L.: Ann. Phys. (Paris) 3, 137 (1948)

    Google Scholar 

  9. Kaneyoshi, T.: J. Phys. Soc. Jpn. 70, 884 (2001)

    Article  ADS  Google Scholar 

  10. Cador, O., Vaz, M.G.F., Stump, H.O., Mathoniere, C.: J. Magn. Magn. Mater. 234, 6 (2001)

    Article  ADS  Google Scholar 

  11. Tang, G., He, Y., Liang, F., Li, S., Huang, Y.: Phys. B 392, 7 (2007)

    Article  Google Scholar 

  12. Kumar, A., Yusuf, S.M.: Phys. Rept. 556, 1 (2015)

    Article  ADS  Google Scholar 

  13. Kaneyoshi, T.: J. Supercond. Nov. Magn. (2016). published on line

  14. Naito, T., Suzuki, I., Itoh, M., Takayama, T.: J. Appl. Phys. 109, 07C911 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kaneyoshi.

Appendix

Appendix

The coefficients A n and B n (n = 1–15) of coupled Eqs. (7) and (8) are given by

$$\begin{array}{@{}rcl@{}} A_{1} &=&{\cosh}^{3}\left( A \right) \sinh \left( A \right)\cosh^{\text{2}}(C)F_{A} \left( {x+H} \right)\vert_{x=0} \\ A_{2} &=&{\cosh}^{4}\left( A \right)\sinh \left( C \right)\cosh\left( C \right) F_{\mathrm{A}} \left( {x+H} \right)\vert_{x=0} \\ A_{3} &=&{\cosh}\left( A\right)\sinh^{3}\left( A \right)\cosh_{2} \left( C \right)F_{\mathrm{A}} \left( {x+H} \right)\vert_{x=0} \\ A_{4} &=&{\cosh}^{2}\left( A \right)\sinh^{2}\left( A \right)\sinh\left( C \right)\cosh\left( C \right)F_{\mathrm{A}} \left( {x+H} \right)\vert_{x=0} \\ A_{5}&=&{\cosh}^{3}\left( A \right)\sinh\left( A \right)\sinh^{2}\left( C \right) F_{\mathrm{A}} \left( {x+H} \right)\vert_{x=0} \\ A_{6}&=&{\sinh}^{4}\left( A \right)\sinh\left( C \right)\cosh\left( C \right)F_{\mathrm{A}} \left( {x+H} \right)\vert_{x=0} \\ A_{7}&=&{\cosh}\left( A \right)\sinh^{3}\left( A \right)\sinh^{2}\left( C \right)F_{\mathrm{A}} \left( {x+H} \right)\vert_{x=0} \\ A_{8}&=&{\cosh}^{4}\left( A \right)\cosh^{2}\left( C \right) F_{\mathrm{A}} \left( {x+H} \right)\vert_{x=0} \\ A_{9} &=&{\cosh}^{2}\left( A \right)\sinh^{2}\left( A \right)\cosh^{2}\left( C \right) F_{\mathrm{A}} \left( {x+H} \right)\vert_{x=0} \\ A_{10} &=&{\cosh}^{3}\left( A \right)\sinh\left( A \right)\sinh\left( C \right)\cosh\left( C \right) F_{\mathrm{A}} \left( {x+H} \right)\vert_{x=0} \\ A_{11} &=&{\cosh}^{4}\left( A \right)\cosh^{2}\left( C \right) F_{\mathrm{A}} \left( {x+H} \right)\vert_{x=0} \\ A_{12} &=&{\sinh}^{4}\left( A \right)\cosh^{2}\left( C \right) F_{\mathrm{A}} \left( {x+H} \right)\vert_{x=0} \\ A_{13} &=&{\cosh}\left( A \right)\sinh^{3}\left( A \right)\sinh\left( C \right)\cosh\left( C \right)F_{\mathrm{A}} \left( {x+H} \right)\vert_{x=0} \\ A_{14} &=&{\cosh}^{2}\left( A \right)\sinh^{2}\left( A \right)\sinh^{2}\left( C \right) F_{\mathrm{A}} \left( {x+H} \right)\vert_{x=0} \\ A_{15} &=&{\sinh}^{4}\left( A \right)\sinh^{2}\left( C \right) F_{\mathrm{A}} \left( {x+H} \right)\vert_{x=0} \end{array} $$
(10)

and

$$\begin{array}{@{}rcl@{}} B_{1} &=&{\cosh}^{3}\left( B \right)\sinh\left( B \right)\cosh^{2}\left( C \right)F_{\mathrm{B}} \left( {x+H} \right)|_{x=0} \\ B_{2} &=&{\cosh}^{4}\left( B \right)\sinh \left( C \right)\cosh \left( C \right) F_{\mathrm{B}} \left( {x+H} \right)|_{x=0} \\ B_{3} &=&{\cosh}\left( B \right)\sinh^{3}\left( B \right)\cosh_{2} \left( C \right) F_{\mathrm{B}} \left( {x+H} \right)|_{x=0} \\ B_{4} &=&{\cosh}^{2}\left( B \right)\sinh^{2}\left( B \right)\sinh\left( C \right)\cosh\left( C \right) F_{\mathrm{B}} \left( {x+H} \right)|_{x=0} \\ B_{5} &=&{\cosh}^{3}\left( B \right)\sinh \left( B \right)\sinh^{2}\left( C \right)F_{\mathrm{B}} \left( {x+H} \right)|_{x=0} \\ B_{6} &=&{\sinh}^{4}\left( B \right)\sinh\left( C \right)\cosh\left( C \right)F_{\mathrm{B}} \left( {x+H} \right)|_{x=0} \\ B_{7} &=&{\cosh}\left( B \right)\sinh^{3}\left( B \right)\sinh^{2}\left( C \right)F_{\mathrm{B}} \left( {x+H} \right)|_{x=0} \\ B_{8} &=&{\cosh}^{4}\left( B \right)\cosh^{2}\left( C \right) F_{\mathrm{B}} \left( {x+H} \right)|_{x=0} \\ B_{9} &=&{\cosh}^{2}\left( B \right)\sinh^{2}\left( B \right)\cosh^{2}\left( C \right)F_{\mathrm{B}} \left( {x+H} \right)|_{x=0} \\ B_{10} &=&{\cosh}^{3}\left( B \right)\sinh\left( B \right)\sinh\left( C \right)\cosh\left( C \right)F_{\mathrm{B}} \left( {x+H} \right)|_{x=0} \\ B_{11} &=&{\cosh}^{4}\left( B \right)\cosh^{2}\left( C \right)F_{\mathrm{B}} \left( {x+H} \right)|_{x=0} \\ B_{12} &=&{\sinh}^{4}\left( B \right)\cosh^{2}\left( C \right)F_{\mathrm{B}} \left( {x+H} \right)|_{x=0} \\ B_{13} &=&{\cosh}\left( B \right)\sinh^{\text{3}}\left( B \right)\sinh\left( C \right)\cosh\left( C \right)\text{}F_{\mathrm{B}} \left( {x+H} \right)|_{x=0} \\ B_{14} &=&{\cosh}^{2}\left( B \right)\sinh^{2}\left( B \right)\sinh^{2}\left( C \right)\text{}F_{\mathrm{B}} \left( {x+H} \right)|_{x=0} \\ B_{15}& =&{\sinh}^{4}\left( B \right)\sinh^{2}\left( C \right)\text{}F_{\mathrm{B}} \left( {x+H} \right)|_{x=0} \end{array} $$
(11)

where these coefficients can be easily calculated by using the mathematical relation exp(a D)F(x) = F(x + a).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaneyoshi, T. Compensation Point Phenomena in a Transverse Ising Antiferromagnet: Unconventional Effects of an Applied Magnetic Field. J Supercond Nov Magn 30, 1309–1315 (2017). https://doi.org/10.1007/s10948-016-3929-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3929-9

Keywords

Navigation