Skip to main content
Log in

Mechanical Behaviours in Bi2223/Ag/Ag Alloy Composite Tape with Different Volume Fractions

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Bi2Cr2Ca2Cu3O x (Bi2223) composite tapes consisting of Bi2223 filaments, metal Ag and Ag alloy are usually exposed to a high magnetic field. The mechanical behaviour of composites is determined by the distribution and content of Bi2223 filaments in a magnetic field. Several Bi2223 composite tapes have different volume fractions of Bi2223 filaments, and the volume fraction is of fundamental importance in the determination of mechanical behaviour. In this paper, we present mechanical response to understand the effect of volume fraction of Bi2223 filaments. The critical current density is determined with consideration of the self field effect firstly. Then, the results of effective elastic moduli and mechanical stresses are presented based on the micromechanics approach. The mechanical response depends not only on the material properties but also on the Lorentz force. It is concluded from the computational results that the reduction of volume fraction of filaments can increase the mechanical stability, while the critical current density is decreased. Thus, it is necessary to consider both the mechanical limitation and requirement of the critical current of tape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Osabe, G., Ayai, N., Kikuchi, M., Tatamidani, K., Nakashima, T., Fujikami, J., Kagiyama, T., Yamazaki, K., Yamade, S., Shizuya, E.: Recent progress of high performance Ag-sheathed Bi2223 wire. Phys. C 470(20), 1365–1368 (2010)

    Article  ADS  Google Scholar 

  2. Larbalestier, D., Jiang, J., Trociewitz, U., Kametani, F., Scheuerlein, C., Dalban-Canassy, M., Matras, M., Chen, P., Craig, N., Lee, P.: Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T. Nat. Mater. 13(4), 375–381 (2014)

    Article  ADS  Google Scholar 

  3. Hojo, M., Nakamura, M., Tanaka, M., Adachi, T., Sugano, M., Ochiai, S., Osamura, K.: Analysis of mesoscopic stress states with delamination and their relation to critical current under bending deformation in Bi2223/Ag superconducting composite tapes. Supercond. Sci. Technol. 18(12), S356–S363 (2005)

    Article  ADS  Google Scholar 

  4. Miyoshi, Y., Nishijima, G., Kitaguchi, H., Chaud, X.: Hoop stress test on new high strength alloy laminated Bi-2223 conductor. Supercond. Sci. Technol. 28(7), 075013 (2015)

    Article  ADS  Google Scholar 

  5. Ochiai, S., Ishida, T., Doko, D., Morishita, K., Okuda, H., Oh, S., Ha, D., Hojo, M., Tanaka, M., Sugano, M.: A Monte Carlo–shear lag simulation of tensile fracture behaviour of Bi2223 filament. Supercond. Sci. Technol. 18(12), S232–S240 (2005)

    Article  ADS  Google Scholar 

  6. Osamura, K., Sugano, M.: Mechanical properties of powder-in-tube processed mono-and multi-filamentary Bi2223 tapes. Phys. C 357, 1128–1133 (2001)

    Article  ADS  Google Scholar 

  7. Gou, X., Shen, Q.: Modeling of the bending strain dependence of the critical current in Bi2223/Ag composite tapes based on the damage stress of the superconducting filament. Phys. C 475, 5–9 (2012)

    Article  ADS  Google Scholar 

  8. Ochiai, S., Matsuoka, T., Shin, J., Okuda, H., Sugano, M., Hojo, M., Osamura, K.: Modeling analysis of the critical current of bent Bi2223 composite tape based on the damage strain parameter and the shape of the core. Supercond. Sci. Technol. 20(10), 1076 (2007)

    Article  ADS  Google Scholar 

  9. Ochiai, S., Okuda, H., Sugano, M., Hojo, M., Osamura, K.: Prediction of variation in critical current with applied tensile/bending strain of Bi2223 composite tape from tensile stress-strain curve. J. Appl. Phys. 107(8), 083904 (2010)

    Article  ADS  Google Scholar 

  10. Shin, H.-S., Katagiri, K.: Critical current degradation behaviour in Bi-2223 superconducting tapes under bending and torsion strains. Supercond. Sci. Technol. 16(9), 1012–1018 (2003)

    Article  ADS  Google Scholar 

  11. Eremenko, V., Sirenko, V., Szymczak, H., Nabialek, A., Balbashov, M.: Magnetostriction of thin flat superconductor in a transverse magnetic field. Superlattice. Microstruct. 24(3), 221–226 (1998)

    Article  ADS  Google Scholar 

  12. Huang, C.-G., Yong, H.-D., Zhou, Y.-H.: Critical state model for magneto-elastic problem of thin superconducting disks. J. Appl. Phys. 114(3), 033913 (2013)

    Article  ADS  Google Scholar 

  13. Huang, C.G., Yong, H.D., Zhou, Y.H.: Magnetostrictive behaviors of type-II superconducting cylinders and rings with finite thickness. Supercond. Sci. Technol. 26(10), 105007 (2013)

    Article  ADS  Google Scholar 

  14. Ikuta, H., Hirota, N., Nakayama, Y., Kishio, K., Kitazawa, K.: Giant magnetostriction in Bi2Sr2CaCu2O8 single crystal in the superconducting state and its mechanism. Phys. Rev. Lett. 70(14), 2166–2169 (1993)

    Article  ADS  Google Scholar 

  15. Ikuta, H., Kishio, K., Kitazawa, K.: Critical state models for flux-pinning-induced magnetostriction in type-II superconductors. J. Appl. Phys. 76(8), 4776–4786 (1994)

    Article  ADS  Google Scholar 

  16. İnanır, F., Okutan, M., Yakuphanoğlu, F.: Modeling of normal-state like contribution on the pinning induced magnetostriction. Phys. C 468(1), 39–46 (2008)

    Article  ADS  Google Scholar 

  17. Jing, Z., Yong, H., Zhou, Y.: Flux-pinning-induced interfacial shearing and transverse normal stress in a superconducting coated conductor long strip. J. Appl. Phys. 112(4), 043908 (2012)

    Article  ADS  Google Scholar 

  18. Johansen, T.H.: Flux-pinning-induced stress and strain in superconductors: case of a long circular cylinder. Phys. Rev. B 60(13), 9690 (1999)

    Article  ADS  Google Scholar 

  19. Johansen, T.H.: Flux-pinning-induced stress and strain in superconductors: long rectangular slab. Phys. Rev. B 59(17), 11187 (1999)

    Article  ADS  Google Scholar 

  20. Johansen, T.H.: Flux-pinning-induced stress and magnetostriction in bulk superconductors. Supercond. Sci. Technol. 13, R121 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  21. Johansen, T.H., Shantsev, D.V.: Magnetostrictive behaviour of thin superconducting disks. Supercond. Sci. Technol. 16, 1109 (2003)

    Article  ADS  Google Scholar 

  22. Nabialek, A., Szymczak, H., Sirenko, V., Dy̌achenko, A.: Influence of the real shape of a sample on the pinning induced magnetostriction. J. Appl. Phys. 84, 3770 (1998)

    Article  ADS  Google Scholar 

  23. Ren, Y., Weinstein, R., Liu, J., Sawh, R., Foster, C.: Damage caused by magnetic pressure at high trapped field in quasi-permanent magnets composed of melt-textured Y-Ba-Cu-O superconductor. Phys. C 251(1-2), 15–26 (1995)

    Article  ADS  Google Scholar 

  24. Xue, C., He, A., Yong, H., Zhou, Y.: Magneto-elastic behaviour of thin type-II superconducting strip with field-dependent critical current. J. Appl. Phys. 113(2), 023901 (2013)

    Article  ADS  Google Scholar 

  25. Yong, H., Zhou, Y.: Flux pinning induced stress and magnetostriction in a long elliptic cylindrical superconductor. J. Appl. Phys. 114(2), 023902 (2013)

    Article  ADS  Google Scholar 

  26. Yong, H.D., Zhou, Y.H.: Stress distribution in a flat superconducting strip with transport current. J. Appl. Phys. 109(7), 073902 (2011)

    Article  ADS  Google Scholar 

  27. Feng, W., Han, X., Ma, P.: Flux-pinning-induced stress and magnetostriction in a functionally graded long rectangular superconductor slab. J. Appl. Phys. 110(6), 063917 (2011)

    Article  ADS  Google Scholar 

  28. Feng, W., Li, Q.: Exponent model for stress distributions in a superconducting cylinder with a concentric elliptic hole. Int. J. Appl. Electrom. 43(3), 301–309 (2013)

    Article  ADS  Google Scholar 

  29. Huang, C.-G., Zhou, Y.-H.: Magnetic and magnetostrictive properties of finite superconducting cylinders containing a cavity. J. Appl. Phys. 115(3), 033904 (2014)

    Article  ADS  Google Scholar 

  30. Yang, Y., Wang, X.: Stress and magnetostriction in an infinite hollow superconducting cylinder with a filling in its central hole. Phys. C 485, 58–63 (2013)

    Article  ADS  Google Scholar 

  31. Yang, Y., Wang, X.: Magnetization and magnetoelastic behavior of a functionally graded rectangular superconductor slab. J. Appl. Phys. 116(2), 023901 (2014)

    Article  ADS  Google Scholar 

  32. Yong, H.-D., Zhou, Y.-H.: Effect of nonsuperconducting particles on the effective magnetostriction of bulk superconductors. J. Appl. Phys. 104(4), 043907 (2008)

    Article  ADS  Google Scholar 

  33. Feng, W., Zhang, R., Ding, H.: Crack problem for an inhomogeneous orthotropic superconducting slab under an electromagnetic force. Phys. C 477, 32–35 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  34. Gao, Z.-W., Zhou, Y.-H., Lee, K.Y.: Crack-inclusion problem for a long rectangular slab of superconductor under an electromagnetic force. Comput. Mater. Sci. 50(2), 279–282 (2010)

    Article  Google Scholar 

  35. Yong, H.-D., Jing, Z., Zhou, Y.-H.: Crack problem for superconducting strip with finite thickness. Int. J. Solids. Struct. 51(3), 886–893 (2014)

    Article  Google Scholar 

  36. Itoh, K., Kuroda, T., Wada, H.: VAMAS round robin test on bending strain effect measurement of Bi-2223 tapes. Phys. C 382(1), 7–11 (2002)

    Article  ADS  Google Scholar 

  37. Rostila, L., Lehtonen, J., Mikkonen, R.: Self-field reduces critical current density in thick YBCO layers. Phys. C 451(1), 66–70 (2007)

    Article  ADS  Google Scholar 

  38. Sanchez, A., Navau, C., Del-Valle, N., Chen, D. X., Clem, J. R.: Self-fields in thin superconducting tapes: implications for the thickness effect in coated conductors. Appl. Phys. Lett. 96, 072510 (2010)

    Article  ADS  Google Scholar 

  39. Kim, Y., Hempstead, C., Strnad, A.: Critical persistent currents in hard superconductors. Phys. Rev. Lett. 9(7), 306 (1962)

    Article  ADS  Google Scholar 

  40. See http://www.comsol.com for information about Comsol Multiphysics

  41. Chen, D., Sanchez, A., Pardo, E.: Transport ac loss of a superconducting cylinder with field and radius dependent critical-current density. Supercond. Sci. Technol. 17(2), 256–262 (2004)

    Article  ADS  Google Scholar 

  42. Huang, C.-G., Yong, H.-D., Zhou, Y.-H.: Influence of critical current density distribution on transport AC losses for round superconducting wire. J. Low Temp. Phys. 172(1-2), 59–69 (2013)

    Article  ADS  Google Scholar 

  43. Su, X.-L., Xiong, L.-T., Gao, Y.-W., Zhou, Y.-H.: Angular dependence of transport AC losses in superconducting wire with position-dependent critical current density in a DC magnetic field. J. Low Temp. Phys. 172(1-2), 154–161 (2013)

    Article  ADS  Google Scholar 

  44. Zhao, Y.-F., Zhou, Y.-H.: Transport ac losses in superconducting cylinder with critical current density distribution along radius. J. Low Temp. Phys. 156(1-2), 30–37 (2009)

    Article  ADS  Google Scholar 

  45. Prigozhin, L.: The Bean model in superconductivity: variational formulation and numerical solution. J. Comput. Phys. 129(1), 190–200 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Prigozhin, L.: Analysis of critical-state problems in type-II superconductivity. IEEE Trans. Appl. Supercond. 7(4), 3866–3873 (1997)

    Article  Google Scholar 

  47. Yong, H.D., Xue, C., Zhou, Y.H.: Thickness dependence of fracture behaviour in a superconducting strip. Supercond. Sci. Technol. 26(5), 055003 (2013)

    Article  ADS  Google Scholar 

  48. Boso, D., Lefik, M., Schrefler, B.: A multilevel homogenised model for superconducting strand thermomechanics. Cryogenics 45(4), 259–271 (2005)

    Article  ADS  Google Scholar 

  49. Boso, D., Lefik, M., Schrefler, B.: Multiscale analysis of the influence of the triplet helicoidal geometry on the strain state of a Nb 3 Sn based strand for ITER coils. Cryogenics 45(9), 589–605 (2005)

    Article  ADS  Google Scholar 

  50. Yang, Q.-S., Becker, W.: Effective stiffness and microscopic deformation of an orthotropic plate containing arbitrary holes. Comput. struct. 82(27), 2301–2307 (2004)

    Article  Google Scholar 

  51. Hassani, B., Hinton, E.: Homogenization and structural topology optimization: theory, practice and software. Springer London (1999)

  52. Sánchez-Palencia, E.: Non-homogeneous media and vibration theory. Springer-Verlag Berlin (1980)

  53. Kaw, A.K.: Mechanics of composite materials. CRC press (2010)

  54. Zhang, Z., Chen, W., Gou, X.: Numerical studies of thermally induced residual strain/stress in Bi2Sr2Ca2Cu3O x/Ag/Ag Alloy composite tapes and the dependence of material properties on the temperature. J. Supercond. Novel Magn. 27(6), 1387–1396 (2014)

    Article  Google Scholar 

  55. Timoshenko, S., Goodier, J.: Theory of elasticity. McGraw-Hill, New York (1951)

    MATH  Google Scholar 

  56. Beer, F.P., Johnston, E.R., DeWolf, J.T., Mazurek, D.F.: Mechanics of materials. McGraw-Hill, New York (2011)

    Google Scholar 

Download references

Acknowledgments

We acknowledge the support from the National Natural Science Foundation of China (Nos. 11202087, 11421062, 11472120), the National Key Project of Scientific Instrument and Equipment Development (No. 11327802), the National Key Project of Magneto-Constrained Fusion Energy Development Program (No. 2013GB110002), New Century Excellent Talents in University of Ministry of Education of China (NCET-13-0266), the Specialized Research Fund for the Doctoral Program of Higher Education under Grant 20110211120027 and the Fundamental Research Funds for the Central Universities (No. lzujbky-2014-k10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huadong Yong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yong, H., Yang, Y. & Zhou, Y. Mechanical Behaviours in Bi2223/Ag/Ag Alloy Composite Tape with Different Volume Fractions. J Supercond Nov Magn 29, 329–336 (2016). https://doi.org/10.1007/s10948-015-3358-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3358-1

Keywords

Navigation