Skip to main content
Log in

Manipulating Electronic States at Oxide Interfaces Using Focused Micro X-Rays from Standard Lab Sources

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Recently, X-ray illumination, using synchrotron radiation, has been used to manipulate defects, stimulate self-organization, and to probe their structure. Here, we explore a method of defect-engineering low-dimensional systems using focused laboratory-scale X-ray sources. We demonstrate an irreversible change in the conducting properties of the two-dimensional electron gas at the interface between the complex oxide materials LaAlO 3 and SrTiO 3 by X-ray irradiation. The electrical resistance is monitored during exposure as the irradiated regions are driven into a high-resistance state. Our results suggest attention shall be paid on electronic structure modification in X-ray spectroscopic studies and highlight large-area defect manipulation and direct device patterning as possible new fields of application for focused laboratory X-ray sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Huijben, M., Brinkman, A., Koster, G., Rijnders, G., Hilgenkamp, H., Blank, D.H. A.: Adv. Mater. 21, 1665 (2009)

    Article  Google Scholar 

  2. Littlewood, P.: Nat. Mater. 10, 726 (2011)

    Article  ADS  Google Scholar 

  3. Kalinin, S.V., Spaldin, N.A.: Science 341, 858 (2013)

    Article  ADS  Google Scholar 

  4. Ice, G.E., Budai, J.D., Pang, J.W.L.: Science 334, 1234 (2011)

    Article  ADS  Google Scholar 

  5. Schroer, C.G. et al.: Appl. Phys. Lett. 87, 124103 (2005)

    Article  ADS  Google Scholar 

  6. Kiryukhin, V., Casa, D., Hill, J.P., Keimer, B., Vigliante, A., Tomioka, Y., Tokura, Y.: Nature 386, 813 (1997)

    Article  ADS  Google Scholar 

  7. Analytis, J.G., Ardavan, A., Blundell, S.J., Owen, R.L., Garman, E.F., Jeynes, C., Powell, B.J.: Phys. Rev. Lett. 96, 177002 (2006)

    Article  ADS  Google Scholar 

  8. Polli, D., Rini, M., Wall, S., Schoenlein, R.W., Tomioka, Y., Tokura, Y., Cerullo, G., Cavalleri, A.: Nat. Mater 6, 643 (2007)

    Article  ADS  Google Scholar 

  9. Poccia, N., et al.: Nat. Mater. 10, 733 (2011)

    Article  ADS  Google Scholar 

  10. Poccia, N., et al.: Proc. Natl. Acad. Sci. 109, 15685 (2012)

    Article  ADS  Google Scholar 

  11. Poccia, N., Bianconi, A., Campi, G., Fratini, M., Ricci, A.: Supercond. Sci. Technol. 25, 124004 (2012)

    Article  ADS  Google Scholar 

  12. Garganourakis, M., Scagnoli, V., Huang, S.W., Staub, U., Wadati, H., Nakamura, M., Guzenko, V.A., Kawasaki, M., Tokura, Y.: Phys. Rev. Lett. 109, 157203 (2012)

    Article  ADS  Google Scholar 

  13. Pagliero, A., Mino, L., Borfecchia, E., Truccato, M., Agostino, A., Pascale, L., Enrico, E., De Leo, N., Lamberti, C., Martinez-Criado, G.: Nano Lett. 14, 1583 (2014)

    Article  ADS  Google Scholar 

  14. Chang, S.H., Kim, J., Phatak, C., D’Aquila, K., Kim, S.K., Kim, J., Song, S.J., Hwang, C.S., Estman, J.A., Freeland, J.W., Hong, S.: ACS Nano 8, 1584 (2014)

    Article  Google Scholar 

  15. Fratini, M., Poccia, N., Ricci, A., Campi, G., Burghammer, M., Aeppli, G., Bianconi, A.: Nature 466, 841 (2010)

    Article  ADS  Google Scholar 

  16. Poccia, N., Campi, G., Fratini, M., Ricci, A., Saini, N.L., Bianconi, A.: Phys. Rev. B 84, 100504 (R) (2011)

    Article  ADS  Google Scholar 

  17. Poccia, N., et al.: Appl. Phys. Lett. 104, 221903 (2014)

    Article  ADS  Google Scholar 

  18. Campi, G., Ricci, A., Poccia, N., Barba, L., Arrighetti, G., Burghammer, M., Caporale, A.S., Bianconi, A.: Phys. Rev. B 87, 014517 (2013)

    Article  ADS  Google Scholar 

  19. Ricci, A., Poccia, N., Campi, G., Coneri, F., Caporale, A.S., Innocenti, D., Burghammer, M., Zimmermann, M.v., Bianconi, A.: Sci. Rep. 3, 2383 (2013)

    Article  ADS  Google Scholar 

  20. Ricci, A., et al.: New J. Phys. 16, 053030 (2014)

    Article  ADS  Google Scholar 

  21. Ohtomo, A., Hwang, H.Y.: Nature 427, 423 (2004)

    Article  ADS  Google Scholar 

  22. Thiel, S., Hammerl, G., Schmehl, A., Schneider, C.W., Mannhart, J.: Science 313, 1942 (2006)

    Article  ADS  Google Scholar 

  23. Hilgenkamp, H.: MRS Bullet. 38, 1026–1031 (2013)

    Article  Google Scholar 

  24. Reyren, N., et al.: Science 317, 1196 (2007)

    Article  ADS  Google Scholar 

  25. Brinkman, A., Huijben, M., van Zalk, M., Huijben, J., Zeitler, U., Maan, J.C., van der Wiel, W.G., Rijnders, G., Blank, D.H.A., Hilgenkamp, H.: Nat. Mater. 6, 493 (2007)

    Article  ADS  Google Scholar 

  26. Ariando, et al.: Nat. Commun. 2 (188) (2011)

  27. Schneider, C.W., Esposito, M., Marozau, I., Conder, K., Doebeli, M., Hu, Y., Mallepell, M., Wokaun, A., Lippert, T.: Appl. Phys. Lett. 97, 192107 (2010)

    Article  ADS  Google Scholar 

  28. Alexandrov, V.E., Kotomin, E.A., Maier, J., Evarestov, R.A.: Eur. Phys. J. B 72, 53 (2009)

    Article  ADS  Google Scholar 

  29. De Souza, R.A., Metlenko, V., Park, D., Weirich, T.E.: Phys. Rev. B 85, 174109 (2012)

    Article  ADS  Google Scholar 

  30. Fister, T.T., et al.: APL Mater. 2, 021102 (2014)

    Article  ADS  Google Scholar 

  31. Schneider, C.W., Thiel, S., Hammerl, G., Richter, C., Mannhart, J.: Appl. Phys. Lett. 89, 122101 (2006)

    Article  ADS  Google Scholar 

  32. Eerkes, P.D., Van der Wiel, W.G., Hilgenkamp, H.: Appl. Phys. Lett. 103, 201603 (2013)

    Article  ADS  Google Scholar 

  33. Kawasaki, M., Takahashi, K., Maeda, T., Tsuchiya, R., Shinohara, M., Ishiyama, O., Yonezawa, T., Yoshimoto, M., Koinuma, H.: Science 266, 1540–1542 (1993)

    Article  ADS  Google Scholar 

  34. Schneider, C.W., Thiel, S., Hammerl, G., Richter, C., Mannhart, J.: Appl. Phys. Lett. 89, 122101 (2006)

    Article  ADS  Google Scholar 

  35. Leibovitch, M., Kronick, L., Fefer, E., Shapira, Y.: Phys. Rev. B 50, 1739 (1994)

    Article  ADS  Google Scholar 

  36. Rastogi, A., Budhani, R.C.: Opt. Lett. 37, 317 (2012)

    Article  ADS  Google Scholar 

  37. Santander-Syro, A.F., et al.: Nature 469, 189 (2011)

    Article  ADS  Google Scholar 

  38. Lu, H.-L., Zhang, L., Ma, X.-M., Lian, G.-J., Yang, J.-B., Yu, D.-P., Liao, Z.-M.: Nanoscale 6, 736 (2014)

    Article  ADS  Google Scholar 

  39. Guduru, V.K., et al.: Appl. Phys. Lett. 102, 051604 (2013)

    Article  ADS  Google Scholar 

  40. McCollam, A. et al.: Appl. Mater. 2, 022102 (2014)

    Article  ADS  Google Scholar 

  41. Carrasco, J., Illas, F., Lopez, N., Kotomin, E., Zhukovskii, Y., Evarestov, R., Mastrikov, Y., Piskunov, S., Maier, J.: Phys. Rev. B 73, 064106 (2006)

    Article  ADS  Google Scholar 

  42. Kalabukhov, A., Gunnarsson, R., Börjesson, J., Olsson, E., Claeson, T., Winkler, D.: Phys. Rev. B 75, 121404 (R) (2007)

    Article  ADS  Google Scholar 

  43. Plumb, N. C., et al.: arxiv:1302.0708 (2013)

  44. Plumb, N. C., et al.: arxiv:1304.5948 (2013)

  45. Kohlrausch, R.: Pogg. Ann. Phys. Chem. 91, 179 (1854)

    Article  ADS  Google Scholar 

  46. Palmer, R.G., Stein, D.L., Abrahams, E., Anderson, P.W.: Phys. Rev. Lett. 53, 958 (1984)

    Article  ADS  Google Scholar 

  47. Chamberlin, R.V., Mozurkewich, G., Orbach, R.: Phys. Rev. Lett. 52, 867 (1984)

    Article  ADS  Google Scholar 

  48. Phillips, J.C.: Prog. Rep. Phys. 59, 1133 (1996)

    Article  ADS  Google Scholar 

  49. Welch, R.C., Smith, J.R., Potuzak, M., Guo, X., Bowden, B.F., Kiczenski, T.J., Allan, D.C., King, E.A., Ellison, A.J., Mauro, J.C.: Phys. Rev. Lett. 110, 265901 (2013)

    Article  ADS  Google Scholar 

  50. Bianconi, A., Missori, M., Oyanagi, H., Yamaguchi, H., Ha, D.H., Nishiara, Y., Della Longa, S.: EPL Europhys. Lett. 31, 411 (1995)

    Article  ADS  Google Scholar 

  51. Bianconi, A., Della Longa, S., Li, C., Pompa, M., Congiu-Castellano, A., Udron, D., Flank, A., Lagarde, P.: Phys. Rev. B 44, 10126 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank the PANalytical company for providing us with access to the focused X-ray source. We are grateful to Alexander Kharchenko, Detlef Beckers, Eugene Reuvekamp, Joachim Woitok and Martijn Fransen at PANalytical for their support. We thank Frank Roesthuis and Dick Veldhuis for help and support during the experiments and Alexander Brinkman and Gertjan Koster for useful discussions. The work was supported by the Dutch FOM and NWO foundations. N.P. acknowledges the financial support from the Marie Curie IEF project for career development. X.R.W. acknowledges the financial support from the Dutch Rubicon grant.

Conflict of interests

The authors declare that they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Poccia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poccia, N., Ricci, A., Coneri, F. et al. Manipulating Electronic States at Oxide Interfaces Using Focused Micro X-Rays from Standard Lab Sources. J Supercond Nov Magn 28, 1267–1272 (2015). https://doi.org/10.1007/s10948-014-2902-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2902-8

Keywords

Navigation