Skip to main content
Log in

Synthesis and Development of Thermoelectric Properties in Layered Bi2A2CoO6

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Bi-based layered cobalt oxide [Bi2 A 2CoO6] with A = (Ca2+, Mg2+) nanoparticles were prepared by co-precipitation method. Coprecipitation method was used to improve homogeneity and phase purity of nanoparticles and is rarely reported for such type of materials. From X-ray diffraction (XRD) data, structural analysis was carried out for both samples Bi2Ca2CoO6 (BCCO) and Bi2Mg2CoO6 (BMCO). Crystallite size, lattice constants, and volume of unit cell were calculated using XRD data. Both compositions showed monoclinic crystal structure with space group C2/c. Crystallite sizes obtained were 52 and 50 nm for BCCO and BMCO samples, respectively. Scanning electron micrographs show the particle-like morphology with an average particle size of 54 and 68 nm for BCCO and BMCO samples, respectively. Thermogravimetric analysis-(TGA)-differential scanning calorimetery (DSC) technique was used to observe role of heat changes in both the samples with temperature variation up to 1000C. BCCO was found thermally more stable as compared to BMCO. Electrical resistivity decreased with increase in temperature, and BMCO showed high values as compared to BCCO. Thermal transport properties like thermal conductivity, thermal diffusivity, and volumetric heat capacity were determined. Both compositions are low thermally conducting materials. BCCO sample showed higher thermal conduction as compared to BMCO. BCCO sample could be a better candidate as thermoelectric material as compared to BMCO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen, Z.G., Han, G., Yang, L., Cheng, L., Zou, J.: Prog. Natur. Sci. Mater. Int. 22, 535 (2012)

    Article  Google Scholar 

  2. Sootsman, J.R., Chung, D.Y., Kantzidis, M.G.: Angew. Chem. Int. Ed. Engl. 48, 8616 (2009)

    Article  Google Scholar 

  3. Elsheikh, M.H., Shnawah, D.A., Sabri, M.F., Said, S.B.M., Hassan, M.H., Bashir, M.B.A., Mohamad, M.: Renew. Sust. Energ. Rev. 30, 337 (2014)

    Article  Google Scholar 

  4. Goldsmid, H.J.: Electronics Refrigeration. Pion, London (1986)

    Google Scholar 

  5. Zhao, D., Tan, G.: Appl. Therm. Eng. 66, 15 (2014)

    Article  ADS  Google Scholar 

  6. Alam, H., Ramakrishna, S.: Nano Energy 2, 190 (2013)

    Article  Google Scholar 

  7. Bulusu, A., Walker, D.G.: Superlattice Microst. 44, 1 (2008)

    Article  ADS  Google Scholar 

  8. Maignana, A., Hebert, S., Hervieu, M., Michel, C., Pelloguin, D., Khomskii, D.: J. Phys. Condens. Matter 15, 2711 (2003)

    Article  ADS  Google Scholar 

  9. Chein, R., Huang, G.: Appl. Therm. Eng. 24, 2207 (2004)

    Article  Google Scholar 

  10. Ma, M., Yu, J.: Int. J. Refrig. 38, 352 (2014)

    Article  Google Scholar 

  11. Pichanusakorn, P., Bandaru, P.: Mater. Sci. Eng. R. Rep. 67, 19 (2010)

    Article  Google Scholar 

  12. Gozalez, M.M., Calero, O.C., Chao, P.D.: Renew. Sust. Energ. Rev. 24, 288 (2013)

    Article  Google Scholar 

  13. Rowe, D.M.: Renew. Energ. 16, 1251 (1999)

    Article  Google Scholar 

  14. Shizuya, M., Isobe, M., Baba, Y., Nagai, T., Matsui, Y., Muromachi, E.T.: J. Solid State Chem. 179, 3974 (2006)

    Article  ADS  Google Scholar 

  15. Terasaki, I., Sasago, Y., Uchinokura, K.: Phy. Rev. B 56, 12685 (1997)

    Article  ADS  Google Scholar 

  16. Tarascon, J.M., Ramesh, R., Barboux, P., Hedge, M.S., Hull, G.W., Greene, L.H., Giroud, M., Lepage, Y., Mckinnon, W.R., Waszcak, J.V., Schneemer, L.F.: Solid State Commun. 71, 663 (1989)

    Article  ADS  Google Scholar 

  17. Leligny, H., Grebille, D., Perez, O., Masset, A.C., Harvieu, M., Raveau, B.: Acta Cryst. B 56, 173 (2000)

    Article  Google Scholar 

  18. Masset, A.C., Michel, C., Maigan, A., Harvieu, M., Toulmonde, O., Studer, F., Raveau, B., Hajtmanek, J.: Phys. Rev. B 63, 166 (2000)

    Article  ADS  Google Scholar 

  19. Yoshiaka, J., Tatsuo, F., Makoto, N., Yashitiro, K., Hideki, H., Yasunori, I., Jun, T.: Solid State Commun. 141, 122 (2007)

    Article  Google Scholar 

  20. Tsukada, I., Yamamoto, T., Takagi, M., Tsubone, T., Konno, S., Uchinokura, K.: J. Phys. Soc. Jpn. 70, 834 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Useful discussion with Prof. A. Sotelo Meig, University of Zaragoza, Spain, is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Anis-ur-Rehman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anis-ur-Rehman, M., Abbasi, S.H. & -tuz-Zahra, F. Synthesis and Development of Thermoelectric Properties in Layered Bi2A2CoO6 . J Supercond Nov Magn 28, 1029–1034 (2015). https://doi.org/10.1007/s10948-014-2786-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2786-7

Keywords

Navigation