Skip to main content
Log in

Scaling Analysis of Conductivity-Related Quantities of YBCO Using Ac Loss Peak Temperature as Scaling Parameter

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The ac response of polycrystalline YBCO sample in the frequency range 10–2500 kHz has been measured by using a contactless method. For this purpose, two parameters S(ω,T) and S′(ω,T) have been derived from the measured impedance of the system. The parameters S(ω,T) and S′(ω,T) are related to the real and imaginary parts of ac conductivity, respectively. Both the real and the imaginary parts of ac conductivity show frequency-dependent nature. All the observed features have been interpreted by considering the flux flow losses. Due to the flux penetration, S(ω,T) exhibits a peak below the transition temperature (T C ), which could be explained on the basis of Anderson’s thermally activated flux creep model. Finally, we have applied a model-independent scaling technique to scale all the measured data and obtained the scaling functions by curve fitting method. The same scaling analysis has been found to be also useful for ac susceptibility data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dhingra, I., Das, B.K.: Supercond. Sci. Technol. 6, 765 (1993)

    Article  ADS  Google Scholar 

  2. Chen, D.-X., Sanchez, A., Puig, T., Martinez, L.M., Munoz, J.S.: Physica C 168, 652 (1990)

    Article  ADS  Google Scholar 

  3. Pérez, F., Obradors, X., Fontcuberta, J., Bozec, X., Fert, A.: Supercond. Sci. Technol. 9, 161 (1996)

    Article  ADS  Google Scholar 

  4. Lee, C.Y., Kao, Y.H.: Physica C 256, 183 (1996)

    Article  ADS  Google Scholar 

  5. Nikolo, M.: Am. J. Phys 63(1), 57 (1995)

    Article  ADS  Google Scholar 

  6. Alekseev, F.O., Zalutskiı̌, M.V.: Low Temp. Phys. 35, 112 (2009)

    Article  ADS  Google Scholar 

  7. Sun, J.Z., Char, K., Hahn, M.R., Geballe, T.H., Kapitulnik, A.: Appl. Phys. Lett. 54(7), 663 (1989)

    Article  ADS  Google Scholar 

  8. Goldfarb, R.B., Clark, A.F., Braginski, A.I., Panson, A.J.: Cryogenics 27, 475 (1987)

    Article  ADS  Google Scholar 

  9. Emmen, J.H.P.M., Stollman, G.M., De Jonge, W.J.M.: Physica C 169, 418 (1990)

    Article  ADS  Google Scholar 

  10. Nikolo, M., Goldfarb, R.B.: Phys. Rev. B 39, 6615 (1989)

    Article  ADS  Google Scholar 

  11. Zazo, M., Torres, L., Iñiguez de Francisco, C., Muñoz, J.M.: J. Appl. Phys. 76(10), 7133 (1994)

    Article  ADS  Google Scholar 

  12. Lofland, S., Huang, M.X., Bhagat, S.M.: Physica C 203, 271 (1992)

    Article  ADS  Google Scholar 

  13. Lam, Q.H., Jeffries, C.D., Berdahl, P., Russo, R.E., Reade, R.P.: Phys. Rev. B 46, 437 (1992)

    Article  ADS  Google Scholar 

  14. Bean, C.P.: Rev. Mod. Phys. 36, 31 (1964)

    Article  ADS  Google Scholar 

  15. Maxwell, E., Strongin, M.: Phys. Rev. Lett. 10, 212 (1963)

    Article  ADS  Google Scholar 

  16. Anderson, P.W.: Phys. Rev. Lett. 9, 309 (1962)

    Article  ADS  Google Scholar 

  17. Tinkham, M.: Introduction to Superconductivity. McGraw-Hill, New York (1975)

    Google Scholar 

  18. Bhattacharya, N., Chakrabarti, A., Mandal, B.K., Neogy, C.: Supercond. Sci. Technol. 22, 125013 (2009)

    Article  ADS  Google Scholar 

  19. Bhattacharya, N., Neogy, C.: Phys. Scr. 85, 055701 (2012)

    Article  ADS  Google Scholar 

  20. Bhattacharya, N., Chakrabarti, A., Neogy, C.: Phys. Scr. 83, 045705 (2011)

    Article  ADS  Google Scholar 

  21. Chakrabarti, A., Neogy, C.: Phys. Scr. 85, 045705 (2012)

    Article  ADS  Google Scholar 

  22. Jackson, J.D.: Classical Electrodynamics, 2nd edn. Wiley Eastern, New York (1978)

    Google Scholar 

  23. Sarmago, R.V., Singidas, B.G.: Supercond. Sci. Technol. 17, S578 (2004)

    Article  ADS  Google Scholar 

  24. Müller, K.H.: Physica C 168, 585 (1990)

    Article  ADS  Google Scholar 

  25. Chakrabarti, A., Ranganathan, R., Mukherjee, C.D., Chatterjee, N.: Solid State Commun. 78, 615 (1991)

    Article  ADS  Google Scholar 

  26. Trybuła, Z., Stankowski, J., Baszynski, J.: Physica C 156, 485 (1988)

    Article  ADS  Google Scholar 

  27. Bonn, D.A., Dosanjh, P., Liang, R., Hardy, W.N.: Phys. Rev. Lett. 68, 2390 (1992)

    Article  ADS  Google Scholar 

  28. Ito, T., Takenaka, K., Uchida, S.: Phys. Rev. Lett. 70, 3995 (1993)

    Article  ADS  Google Scholar 

  29. Takemura, T., Kitajima, T., Sugaya, T., Terasaki, I.: J. Phys. Condens. Matter 12, 6199 (2000)

    Article  ADS  Google Scholar 

  30. Hwang, H.Y., Batlogg, B., Takagi, H., Kao, H.L., Kwo, J., Cava, R.J., Krajewski, J.J.: Phys. Rev. Lett. 72, 2636 (1994)

    Article  ADS  Google Scholar 

  31. Lee, M.W., Tai, M.F., Shi, J.B.: Physica C 272, 137 (1996)

    Article  ADS  Google Scholar 

  32. Deak, J., McElfresh, M., Clem, J.R., Hao, Z., Konczykowski, M., Muenchausen, R., Foltyn, S., Dye, R.: Phys. Rev. B 49, 6270 (1994)

    Article  ADS  Google Scholar 

  33. Qin, M.J., Ding, S.Y., Shao, H.M., Yao, X.X.: Cryogenics 36, 619 (1996)

    Article  ADS  Google Scholar 

  34. Han, G.C., Ong, C.K., Li, H.P.: Physica C 299, 71 (1998)

    Article  ADS  Google Scholar 

  35. Abu-Samreh, M.M., Saleh, A.M.: J. Supercond., Inc. Nov. Magn. 16, 923 (2003)

    ADS  Google Scholar 

  36. Saleh, A.M., Abu-Samreh, M.M., Leghrouz, A.A.: Physica C 384, 383 (2003)

    Article  ADS  Google Scholar 

  37. Nakane, H.: IEEE Trans. Instrum. Meas. 40, 544 (1991)

    Article  Google Scholar 

  38. Zaman, A.J.M., Long, S.A., Gardner, C.G.: IEEE Trans. Instrum. Meas. 30, 41 (1981)

    Article  Google Scholar 

Download references

Acknowledgement

The work was carried out with partial financial support from the PURSE programme (Department of Science and Technology) of the University of Kalyani.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Bhattacharya.

Appendix

Appendix

If Z s is the impedance of the system in presence of the sample and Z v is that of absence of the sample, then \(Z_{s} - Z_{v} = i\omega [(\varepsilon_{s}^{ *} - \varepsilon_{v}^{ *} )C_{e} - (\mu_{s} - \mu_{v})C_{m}]\), where C e and C m are geometrical factors.

Now, in vacuum or in air, the relative quantities ε v and μ v can be taken as 1, and the above equation takes the form

$$ Z_{s} - Z_{v} = i\omega \bigl[\bigl(\varepsilon_{s}^{ *} - 1\bigr)C_{e} - (\mu_{s} - 1)C_{m}\bigr]. $$
(3)

Now for a simple practical cylindrical coil, the impedance can be written as

$$\begin{aligned} Z = R + i\omega L = R + i\omega L_{0}\mu, \end{aligned}$$

where the symbols have their usual meaning [37, 38]. If we consider R v to be the sum of the coil resistance and the extra resistance due to the connecting wire, μ s and μ v are core permeability with and without the sample in the vacuum environment, then the impedance of the coil with and without the sample can be written as

$$ Z_{s} = R_{v} + i\omega L_{0}\mu_{s} $$
(4)

and

$$ Z_{v} = R_{v} + i\omega L_{0} \mu_{v} = R_{v} + i\omega L_{0}\quad (\mbox{as}\ \mu_{v} \approx 1). $$
(5)

Now, Z s Z v =iωL 0(μ s −1), and, therefore,

$$ (\mu_{s} - 1) = \frac{Z_{s} - Z_{v}}{i\omega L_{0}}. $$
(6)

Now, using relation (6) in relation (3), we have

$$\begin{aligned} &(Z_{s} - Z_{v}) = i\omega \biggl[\bigl( \varepsilon_{s}^{ *} - 1\bigr)C_{e} - \frac{Z_{s} - Z_{v}}{i\omega L_{0}}C_{m}\biggr] \\ &\quad {}\Rightarrow \quad \frac{Z_{s} - Z_{v}}{\omega L_{0}} = \frac{i}{L_{0}}\biggl[\bigl\{ ( \varepsilon_{1} - i\varepsilon_{2}) - 1\bigr\} C_{e} - \frac{Z_{s} - Z_{v}}{i\omega L_{0}}C_{m}\biggr] \\ &\quad {}\Rightarrow \quad \frac{Z_{s} - Z_{v}}{\omega} \biggl\{ 1 + \frac{C_{m}}{L_{0}} \biggr\} = \bigl\{ \varepsilon_{2} + i(\varepsilon_{1} - 1) \bigr\} C_{e}. \end{aligned}$$
(7)

Now using the relation \(\varepsilon (\omega ) = 1 + \frac{4\pi i}{\omega} \sigma (\omega )\), we can write

$$\begin{aligned} &\varepsilon_{1} = 1 - \frac{4\pi \sigma_{2}}{\omega} \\ &\quad {} \Rightarrow\quad (\varepsilon_{1} - 1) = - \frac{4\pi \sigma_{2}}{\omega}\quad \mbox{and}\quad \varepsilon_{2} = \frac{4\pi \sigma_{1}}{\omega}. \end{aligned}$$

Using these two relations in Eq. (7), we have

$$\begin{aligned} &\frac{Z_{s} - Z_{v}}{\omega} \biggl\{ 1 + \frac{C_{m}}{L_{0}}\biggr\} = \biggl[ \frac{4\pi \sigma_{1}}{\omega} - i\frac{4\pi \sigma_{2}}{\omega} \biggr]C_{e} \\ &\quad {} \Rightarrow\quad \frac{Z_{s} - Z_{v}}{\omega L_{0}}\biggl\{ 1 + \frac{C_{m}}{L_{0}} \biggr\} \frac{L_{0}}{C_{e}} = \frac{4\pi \sigma_{1}}{\omega} - i\frac{4\pi \sigma_{2}}{\omega} \\ &\quad {} \Rightarrow \quad \frac{Z_{s} - Z_{v}}{L_{0}}Y = 4\pi \sigma_{1} - i4 \pi \sigma_{2} \\ &\phantom{\quad {} \Rightarrow \qquad}\mbox{where } Y = \biggl(1 + \frac{C_{m}}{L_{0}} \biggr)\frac{L_{0}}{C_{e}} \\ &\quad {}\Rightarrow \quad \frac{Z_{s} - Z_{v}}{L_{0}} = \frac{4\pi}{Y}\sigma_{1} - i\frac{4\pi}{ Y}\sigma_{2} . \end{aligned}$$

Now we define two quantities S(ω) and S′(ω) for constructing a complex quantity to equate with the \(\frac{Z_{s} - Z_{v}}{L_{0}}\), i.e., \(S + iS' = ( \frac{Z{}_{s} - Z_{v}}{L_{0}} )\). Then \(S(\omega ) = \frac{4\pi}{Y}\sigma_{1}\) and \(S' (\omega ) = - \frac{4\pi}{Y}\sigma_{2}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, N., Neogy, C. Scaling Analysis of Conductivity-Related Quantities of YBCO Using Ac Loss Peak Temperature as Scaling Parameter. J Supercond Nov Magn 27, 389–395 (2014). https://doi.org/10.1007/s10948-013-2329-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-013-2329-7

Keywords

Navigation