Skip to main content
Log in

Arsenic removal from water by photocatalytic functional Fe2O3–TiO2 porous ceramic

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Fe2O3–TiO2 porous ceramic (Fe/TiPC) beads with photo-catalytic performances and high adsorption capacities were prepared by a simple high temperature solid reaction and were applied for arsenic removal from drinking water. The microstructure and morphology of Fe/TiPC were characterized by X-ray diffraction and scanning electron microscopy. More than 90% removal ratio for As (III) and As (V) were respectively achieved by Fe/TiPC within 2 h under UV irradiation. The Langmuir capacity values of Fe/TiPC for As (III) and As (V) were 13.86 and 15.73 mg/g, respectively. In addition, Fe/TiPC could be reused for up to five times without significant reduction in the photocatalytic sensitivity and adsorption capacity aspects. Good catalytic oxidation performances and high adsorption capacities as well as a sample preparation for Fe/TiPC suggest that the composites may have practical prospects for the As (III) and As (V) removal from contaminated water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Choong, T.G. Chuah, Y. Robiah, F.L. Koay, I. Azni, Desalination 217, 139 (2007)

    Article  CAS  Google Scholar 

  2. D. Mohan, C.U. Pittman, J. Hazard. Mater. 142, 1 (2007)

    Article  CAS  Google Scholar 

  3. V.K. Sharma, M. Sohn, Environ. Int. 35, 743 (2009)

    Article  CAS  Google Scholar 

  4. WHO, Guidelines for Drinking-water Quality, 4th edn. (World Health Organization, Geneva, 2011).

  5. D.N. Guha Mazumder, R. Haque, N. Ghosh, K.D. Binay, A. Santra, D. Chakraborty, A.H. Smith, Int. J. Epidemiol. 27, 871 (1998).

    Article  CAS  Google Scholar 

  6. N.E. Korte, Q. Fernando, Crit. Rev. Environ. Control 21, 1 (1991).

    Article  CAS  Google Scholar 

  7. M.J. Kim, J. Nriagu, Sci. Total Environ. 247, 71 (2000).

    Article  CAS  Google Scholar 

  8. M. Pettine, L. Campanella, F.J. Millero, Geochim. Cosmochim. Acta 63, 2727 (1999)

    Article  CAS  Google Scholar 

  9. B.A. Manning, S.E. Fendorf, B. Bostick, D.L. Suarez, Environ. Sci. Technol. 36, 976 (2002).

    Article  CAS  Google Scholar 

  10. C. Tournassat, L. Charlet, D. Bosbach, A. Manceau, Environ. Sci. Technol. 36, 493 (2002).

    Article  CAS  Google Scholar 

  11. J. Ryu, W. Choi, Environ. Sci. Technol. 40, 7034 (2006).

    Article  CAS  Google Scholar 

  12. K. Vaaramaa, J. Lehto, Desalination 155, 157 (2003)

    Article  CAS  Google Scholar 

  13. I. Akin, G. Arslan, A. Tor, Y. Cengeleoglu, M. Ersoz, Desalination 281, 88 (2011)

    Article  CAS  Google Scholar 

  14. A.D. Redman, L.D. Macalady, D. Ahmann, Environ. Sci. Technol. 36, 2889 (2002).

    Article  CAS  Google Scholar 

  15. I. Ko, A.P. Davis, J.Y. Kim, K.W. Kim, J. Hazard. Mater. 141, 53 (2007)

    Article  CAS  Google Scholar 

  16. J. Giménez, M. Martínez, J.D. Pablo, M. Rovira, L. Duro, J. Hazard. Mater. 141, 575 (2007)

    Article  Google Scholar 

  17. H. Guo, D. Stüben, Z. Berner, Appl. Geochem. 22, 1039 (2007)

    Article  CAS  Google Scholar 

  18. H. Lee, W. Choi, Environ. Sci. Technol. 36, 3872 (2002).

    Article  CAS  Google Scholar 

  19. P.K. Dutta, A.K. Ray, V.K. Sharma, F.J. Millero, J. Colloid Interface Sci. 278, 270 (2004)

    Article  CAS  Google Scholar 

  20. X. Zhang, L. Lei, Appl. Surf. Sci. 254, 2406 (2008)

    Article  CAS  Google Scholar 

  21. G.A. Parks, P.L. de Bruyn, Phys. Chem. 66, 967 (1962).

    Article  CAS  Google Scholar 

  22. C. Wang, H. Luo, Z. Zhang, Y. Wu, J. Zhang, S. Chen. J. Hazard. Mater. 268, 124 (2014)

    Article  CAS  Google Scholar 

  23. I.A. Katsoyiannis, A.I. Zouboulis, Water Res. 36, 5141 (2002)

    Article  CAS  Google Scholar 

  24. M.L. Pierce, C.B. Moore, Water Res. 16, 1247 (1982)

    Article  CAS  Google Scholar 

  25. Z.J. Li, S.B. Deng, G. Yu, J. Huang, V.C. Lim, Chem. Eng. J. 161, 106 (2010)

    Article  CAS  Google Scholar 

  26. L. Zeng, Water Res. 37, 4351 (2003)

    Article  CAS  Google Scholar 

  27. X.G. Meng, G.P. Korfiatis, S. Bang, K.W. Bang, Toxicol. Lett. 133, 103 (2002)

    Article  CAS  Google Scholar 

  28. Z.M. Gu, J. Fang, B.L. Deng, Environ. Sci. Technol. 39, 3833 (2005)

    Article  CAS  Google Scholar 

  29. M. Stachowicz, T. Hiemstra, W.H. VanRiemsdijk, J. Colloid Interface Sci. 320, 400 (2008)

    Article  CAS  Google Scholar 

  30. C. Su, D.L. Suarez, Clays Clay Miner. 45, 814 (1997).

    Article  CAS  Google Scholar 

  31. X.G. Meng, S. Bang, G. Korfiatis, Water Res. 34, 1255 (2000)

    Article  CAS  Google Scholar 

  32. M.B. Baskan, A. Pala, Desalination 281, 396 (2011)

    Article  Google Scholar 

  33. R.L. Droste, Theory and Practice of Water and Wastewater Treatment. (Wiley, New York, 1997), pp. 457–512

  34. C.-H. Yang, J. Colloid Interface Sci. 208, 379 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the project of Beijing Lucency Enviro-Tech Co.Ltd (KN03616) for financial support and the Scientific Research Foundation of Nanjing University of Science and Technology (AE89909).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianhe Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, H., Lv, X., Zhang, Z. et al. Arsenic removal from water by photocatalytic functional Fe2O3–TiO2 porous ceramic. J Porous Mater 24, 1227–1235 (2017). https://doi.org/10.1007/s10934-017-0362-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-017-0362-9

Keywords

Navigation