Skip to main content
Log in

Effective acetylation of alcohols, phenols and amines over mesoporous aluminophosphate solid acids under solvent free conditions

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Solid acids such as amorphous aluminophosphates (AlP) and iron aluminophosphates (FeAlP) were synthesized by either precipitation or co-precipitation methods. These solid acids were characterized by BET, NH3-TPD, PXRD, FT-IR and NMR techniques for their surface area, surface acidity, crystallinity and functionality. AlPs and FeAlPs were found to be mesoporous in nature. The catalytic activity of these solid acids was determined in acetylation of various alcohols, phenols and amines with acetic anhydride under solvent free conditions. The reaction conditions were optimized by varying the parameters such as molar ratio of the reactants, reaction temperature and amount of the solid acid catalyst. Among the solid acids, FeAlP consisting of 0.025 mol% Fe showed good catalytic activity in the acetylation reaction. These solid acid catalysts can also be reused for acetylation at least for five reaction cycles without any appreciable loss of catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2

Similar content being viewed by others

References

  1. T.W. Green, P.G.M. Wuts, Protective Groups in Organic Synthesis, 3rd edn. (Wiley, New York, 1999)

    Book  Google Scholar 

  2. J.R. Hanson, Protecting Groups in Organic Synthesis, 1st edn. (Blackwell, Malden, 1999)

    Google Scholar 

  3. G. Hofle, V. Steglich, H. Vorbrueggen, Angew. Chem. Int. Ed. 17, 569–589 (1978)

    Article  Google Scholar 

  4. E. Vedejs, S.T. Diver, J. Am. Chem. Soc. 115, 3358–3359 (1993)

    Article  CAS  Google Scholar 

  5. E. Vedejs, N.S. Bennet, L.M. Conn, S.T. Diver, M. Gingras, S. Lin, P.A. Oliver, M.J. Peterson, J. Org. Chem. 58, 7286–7289 (1993)

    Article  CAS  Google Scholar 

  6. J. Iqbal, R.R. Srivastava, J. Org. Chem. 57, 2001–2007 (1992)

    Article  CAS  Google Scholar 

  7. R.H. Backer, F.G. Bordwell, Org. Synth. 3, 141–142 (1995)

    Google Scholar 

  8. S. Chandrasekhar, T. Ramachander, M. Takhi, Tetrahedron Lett. 39, 3263 (1998)

    Article  CAS  Google Scholar 

  9. A.K. Chakraborti, R. Gulhane, Tetrahedron Lett. 44, 6749 (2003)

    Article  CAS  Google Scholar 

  10. S.K. De, Tetrahedron Lett. 45, 2919 (2004)

    Article  Google Scholar 

  11. G. Sartori, R. Ballini, F. Bigi, G. Bosica, R. Maggi, P. Righi, Chem. Rev. 104, 199 (2004)

    Article  CAS  Google Scholar 

  12. A. Sakakura, K. Kawajiri, T. Ohkubo, Y. Kosugi, K. Ishihara, J. Am. Chem. Soc. 129, 14775 (2007)

    Article  CAS  Google Scholar 

  13. D. Martın Alonso, R. Mariscal , R. Moreno-Tost, M.D. Zafra Poves, M. Lopez Granados, Catal. Commun. 8, 2074 (2007)

  14. P. Kumar, R.K. Pandey, M.S. Bodas, M.K. Dongare, Synlett 206–209 (2001)

  15. M.H. Sarvari, H. Sharghi, Tetrahedron 61, 10903 (2005)

    Article  Google Scholar 

  16. H.T. Thakuria, B.M. Borah, G. Das, J. Mol. Catal. A. Chem. 274, 1 (2007)

    Article  CAS  Google Scholar 

  17. F.M. Moghaddam, H. Saeidian, Mater. Sci. Eng. B. 139, 265 (2007)

    Article  CAS  Google Scholar 

  18. B.M. Choudary, V. Bhaskar, M.L. Kantam, K.K. Rao, K.V. Raghavan, Green Chem. 2, 67 (2000)

    Article  CAS  Google Scholar 

  19. P.M. Bhaskar, D. Loganathan, Tetrahedron Lett. 39, 2215 (1998)

    Article  CAS  Google Scholar 

  20. M.L. Kantam, K.V.S. Ranganath, M. Sateesh, B. Sreedhar, B.M. Choudary, J. Mol. Catal. A: Chem. 244, 213 (2006)

    Article  CAS  Google Scholar 

  21. A.K. Chakraborti, R. Gulhane, Chem. Commun. 1896 (2003)

  22. F. Shirini, M.A. Zolfigol, K. Mohammadi, Bull. Korean Chem. Soc. 25, 325 (2004)

    Article  CAS  Google Scholar 

  23. R. Ballini, G. Bosica, S. Carloni, L. Ciaralli, R. Maggi, G. Sartori, Tetrahedron Lett. 39, 6049 (1998)

    Article  CAS  Google Scholar 

  24. S.P. Chavan, R. Anand, K. Pasupathy, B.S. Rao, Green Chem. 3, 320 (2001)

    Article  CAS  Google Scholar 

  25. K.J. Ratnam, R.S. Reddy, N.S. Sekhar, M.L. Kantam, F. Figueras, J. Mol. Catal. A. Chem. 276, 230 (2007)

    Article  CAS  Google Scholar 

  26. C.H. Subrahmanyam, B. Viswanathan, T.K. Varadarajan, J. Mol. Catal. A. Chem. 223, 149 (2004)

    Article  CAS  Google Scholar 

  27. X. Zhu, M. Jia, X. Li, G. Liu, W. Zhang, D. Jiang, Appl. Catal. A. 282, 155 (2005)

    Article  CAS  Google Scholar 

  28. M. Hartmann, L. Kevan, Chem. Rev. 99, 635 (1999)

    Article  CAS  Google Scholar 

  29. C. Bolm, J. Legros, J. Le Paih, L. Zani, Chem. Rev. 104, 6217 (2004)

    Article  CAS  Google Scholar 

  30. F.M. Bautista, J.M. Campelo, D. Luna, J.M. Marinas, R.A. Quiros, A.A. Romero, Appl. Catal. B. 70, 611 (2007)

    Article  CAS  Google Scholar 

  31. G. Kuriakose, J.B. Nagy, N. Nagaraju, Catal. Comm. 6, 29 (2005)

    Article  CAS  Google Scholar 

  32. G. Liu, M. Jia, Z. Zhou, W. Zhang, T. Wu, D. Jiang, Chem. Commun. 14, 1660 (2004)

    Article  Google Scholar 

  33. G. Liu, Z. Wang, M. Jia, X. Zou, X. Zhu, W. Zhang, D. Jiang, J. Phys. Chem. B. 110, 16953 (2006)

    Article  CAS  Google Scholar 

  34. Z. Zhou, G. Liu, W. Zhang, X. Liao, Y. Hou, M. Jia, Mater. Lett. 59, 3503 (2005)

    Article  CAS  Google Scholar 

  35. T. Kimura, Chem. Mater. 17, 5521 (2005)

    Article  CAS  Google Scholar 

  36. A. Mamoru, O. Kyoji, Appl. Catal. A. 180, 47 (1999)

    Article  Google Scholar 

  37. P. Nagaraju, C.H. Srilakshmi, N. Pasha, N. Lingaiah, I. Suryanarayana, P.S. Sai Prasad, Appl. Catal. A. Gen. 334, 10 (2008)

  38. D. Arias, I. Campos, D. Escalante, J. Goldwasser, C.M. Lopez, F.J. Machado, B. Mendez, D. Moronta, M. Pinto, V. Sazo, M.M.R. de Agudelo, J. Mol. Catal. A. 122, 175 (1997)

    Article  CAS  Google Scholar 

  39. J.M. Campelo, M. Jaraba, D. Luna, R. Luque, J.M. Marinas, A.A. Romero, Chem. Mater. 15, 3352 (2003)

    Article  CAS  Google Scholar 

  40. J. Ryczkowski, IR spectroscopy in catalysis. Catal. Today 68, 263 (2001)

    Article  CAS  Google Scholar 

  41. P. Bonnet, J.M.M. Millet, C. Leclercq, J.C. Vedrine, J. Catal. 158, 128 (1996)

    Article  CAS  Google Scholar 

  42. J. El Haskouri, C. Guillem, A. Beltran-Porter, D. Beltran-Porter, S. Mendioroz, M. Dolores Marcos, P. Amoros, Saul Cabrera, 333 (1999)

  43. G. Liu, M. Jia, Z. Zhou, W. Zhang, T. Wu, D. Jiang, Chem. Commun. 1660 (2004)

  44. D. Zhao, Z. Luan, L. Kevan, Chem. Commun. 1009 (1997)

  45. J. Sanz, J.M. Campelo, J.M. Marinas, J. Catal. 130, 642 (1991)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Kuvempu University for IR analysis, IISc, Bangalore for providing PXRD, GC–MS data and IITM for NMR & BET analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Z. Mohamed Shamshuddin.

Appendix

Appendix

Note: All the purified products were characterized by GC–MS, IR and 1H NMR studies and the data are in comparison with the authentic samples.

Amyl acetate (entry 1, Table 2): 1H-NMR (400 MHz; CDCl3; δ/ppm): 4.049(t, 2H, CH2), 2.040(s, 3H, CH3), 1.63(t, 2H, CH2), 1.52 to 1.14 (m, 4H, 2CH2), 0.91(t, 3H, CH3); GC–MS m/z: 130[M]+.

n-Decyl acetate (entry 2, Table 2): 1H-NMR (400 MHz; CDCl3; δ/ppm): 0.87 (t, 3J(H, H) = 6.8 Hz, 3H, CH2CH3), 1.30 (m, 14H, CH3(CH2)7), 1.61 (m, 2H, OCH2CH2), 2.04 (s, 3H, OAc), 4.04 (t, 3J(H, H) = 6.8 Hz, 2H, OCH2);IR (cm−1): 2,925, 2,854, 1,741, 1,239; GC–MS m/z: 200[M]+.

Triacetin (entry 3, Table 2): 1H NMR (400 MHz, CDCl3) δ 2.03 (d, 9 H, J 8 Hz), 4.1 (dd, 2H, J 4.0, 8.0 Hz), 4.2 (dd, 2H, J 8.0, 8.0 Hz), 5.2 (m, 1H), 4.2 (dd, 2H, J 8.0, 8.0 Hz), 5.2 (m, 1H); IR (cm−1): 1,747, 1,372, 1,225, 1,501; GC–MS m/z: 200[M]+.

Cyclohexyl acetate (entry 4, Table 2): 1H NMR (300 MHz, CDCl3) δ 1.25–1.85 (m, 10H), 2.00 (s, 3H), 4.65 (m, 2H); IR (cm−1): 3,020, 2,940, 1,721, 1,256, 1,215, 756; GC–MS m/z: 159 [M]+.

Phenyl acetate (entry 5, Table 2): 1H NMR (300 MHz, CDCl3) δ 2.21 (s, 3H), 7.0–7.4 (m, 5H); IR (cm−1): 1,763, 1,193, 748; GC–MS m/z: 136 [M]+.

4-Methylphenyl acetate (entry 6, Table 2): 1H NMR (300 MHz, CDCl3) δ 2.01 (s, 3H), 2.25 (s, 3H), 6.92 (d, 2H), 7.04 (d, 2H); IR (cm−1): 3,027, 2,953, 1,738, 1,160, 754; GC–MS m/z: 150 [M]+.

4-Chlorophenyl acetate (entry 7, Table 2): 1H NMR (300 MHz, CDCl3) δ 1.98 (s, 3H), 7.0 (d, 2H), 7.25 (d, 2H); IR (cm−1): 1,763, 1,216, 1,198, 756; GC–MS m/z: 170 [M]+.

Benzene-1,4-diyl diacetate (entry 8, Table 2): 1H NMR (CDCl3) δ 2.29 (s, 6H), 7.10 (s, 4H); IR (KBr): 1,762 cm−1; GC–MS m/z: 194 [M]+.

Benzene-1,2,3-triyl diacetate (entry 9, Table 2): 1H NMR (CDCl3) δ 2.27 (s, 9H), 7.11 (d, J = 8.03 Hz, 2H), 7.25 (t, J = 7.50 Hz, 1H); IR (KBr): 1,765, 1,608 cm−1; GC–MS m/z: 252 [M]+.

Benzyl acetate (entry 10, Table 2): 1H NMR (300 MHz, CDCl3) δ 2.07 (s, 3H), 5.05 (s, 2H), 7.26–7.36 (m, 5H); IR (cm−1): 3,020, 1,733, 1,216, 756; GC–MS m/z: 150 [M]+.

2-Phenethyl acetate (entry 11, Table 2): 1H NMR (CDCl3) δ 2.02 (s, 3H), 2.92 (t, J = 7.09 Hz, 2H), 4.27 (t, J = 7.09 Hz, 2H), 7.29 (m, 5H); IR (neat) 1,740 cm−1; GC–MS m/z: 164 [M]+.

p-Methoxybenzyl acetate (entry 12, Table 2): 1H NMR (400 MHz, CDCl3): δ 2.07 (s, 3H, –O–CO–CH3), 3.80 (s, 3H, O–CH3), 5.04 (s, 2H, –CH2–O–), 6.88(d, J = 8.40 Hz, 2H, –Ph), 7.30 (d, J = 8.40 Hz, 2H, –Ph); IR: 2,950, 1,736, 1,516, 1,245, 1,173, 1,040 cm−1; GC–MS m/z: 180 [M]+.

m-Methoxybenzylacetate (entry 13, Table 2): 1H NMR (CDCl3, δ, ppm): 7.22 (t, J = 8.5 Hz, 1H, ArH), 6.9‐6.8 (m, 3H, ArH), 5.03 (s, 2H, CH2), 3.75 (s, 3H, OCH3), 2.05 (s, 3H, OAc); GC–MS m/z: 180 [M]+.

p-Chlorobenzyl acetate (entry 14, Table 2): 1H NMR (60 MHz, CDCl3): δ 1.95 (s, 3H, –O–CO–CH3), 4.8 (s, 2H, –CH2–O–), 7.0 (m, 4H, ArH); IR: 2,960, 1,746, 1,495, 1,383, 1,234, 1,096, 1,014 cm−1; GC–MS m/z: 184[M]+.

2,4-Dichlorobenzylacetate (entry 15, Table 2): 1H NMR (CDCl3, δ, ppm): 7.66 (d, J = 2.3 Hz, 1H, ArH); 7.37 (dd, J = 8.8, 2.3 Hz, 1H, ArH), 6.77 (d, J = 8.8 Hz, 1H, ArH), 5.22 (s, 2H, CH2), 2.15 (s, 3H, OAc); GC–MS m/z:218 [M]+.

p-nitrobenzyl acetate (entry 16, Table 2): 1H NMR (CDCl3, 400 MHz): δ 2.17(s, 3H, COCH3), 5.22(s, 2H, PhCH2), 7.53 (2H, d, J = 8.8 Hz, ArH), 8.23(2H, d, J = 8.8 Hz, ArH) ppm; IR (KBr) cm−1: 1,235(C–O), 1,738(C=O); GC–MS m/z:195 [M]+.

1-Naphthyl acetate (entry 17, Table 2): 1H NMR (300 MHz, CDCl3) δ 2.4 (s, 3H), 7.2–7.9 (m, 7H); IR (cm−1): 3,061, 2,924, 1,767, 1,368, 1,200, 773; GC–MS m/z: 186 [M]+.

2-Naphthyl acetate (entry 18, Table 2): 1H NMR (300 MHz, CDCl3) δ 2.36 (s, 3H), 7.24 (d, J = 8.85 Hz, 1H), 7.47 (m, 2H), 7.56 (s, 1H), 7.78 (m, 3H); IR (KBr): 1,755 cm−1; GC–MS m/z: 186 [M]+.

Diphenylmethyl acetate (entry 19, Table 2): 1H NMR (CDCl3, δ, ppm): 7.38–7.27 (m, 10H, ArH), 7.00 (s, 1H, CH), 2.02 (s, 3H, OAc); GC–MS m/z:226 [M]+.

Benzoin acetate (entry 20, Table 2): 1H NMR (CDCl3, 400 MHz): 2.23 (s, 3H), 6.84 (s, 1H), 7.32–7.53 (m, 8H), 7.95 (d, J = 8.8 Hz, 2H); IR (neat): 1,738, 1,697 cm−1; GC–MS m/z: 269[M]+.

N-phenylacetamide (entry 21, Table 2): 1H NMR (300 MHz, CDCl3) δ 2.19 (s, 3H), 7.16–7.11 (m, 1H), 7.28 (broad s, 1H), 7.36–7.30 (m, 2H), 7.55–7.52 (m, 2H); IR (cm−1): 3,293, 1,662, 1,598, 1,557, 1,500, 1,431, 1,368, 1,325, 1,262, 1,040, 1,012, 962, 906, 750; GC–MS m/z: 135 [M]+.

N-(2-hydroxyphenyl) acetamide (entry 22, Table 2): 1H NMR (300 MHz, CDCl3) δ 2.24 (s, 3H), 6.90 (m, 1H), 7.02 (m, 2H), 7.42 (m, 1H), 8.80(s, 1H),9.11 (bs, 1H); IR (cm−1): 3,403, 3,150, 1,658, 1,587, 1,539, 1,446, 1,397, 1,287, 1,103, 1,037, 891, 767; GC–MS m/z: 151[M]+.

N-(4-hydroxyphenyl) acetamide (entry 23, Table 2): 1H NMR (300 MHz, CDCl3) δ 2.03 (s, 3H), 7.00 (d, 1H), 7.50 (d, 1H), 8.97(s, 1H), 9.40 (bs, 1H); IR (cm−1): 3,326, 3,164, 1,652, 1,611, 1,565, 1,507, 1,442, 1,372, 1,327, 1,259, 1,228, 1,173, 1,108, 969, 837, 808, 715, 687; GC–MS m/z: 151[M]+.

N-benzylacetamide (entry 24, Table 2): 1H NMR (300 MHz, CDCl3) δ 7.36–7.29 (m, 5H), 6.06 (bs, 1H), 4.43 (d, 2H), 2.03 (s, 3H); IR (cm−1): 3,294, 1,646, 1,548, 1,500, 1,283; GC–MS m/z: 149 [M]+.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shyamprasad, K., Mohamed Shamshuddin, S.Z. & Vasantha, V.T. Effective acetylation of alcohols, phenols and amines over mesoporous aluminophosphate solid acids under solvent free conditions. J Porous Mater 21, 1079–1090 (2014). https://doi.org/10.1007/s10934-014-9858-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-014-9858-8

Keywords

Navigation