Skip to main content
Log in

Adsorption of tetrakis(p-sulfonatophenyl)porphyrin on kaolinite

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The surface modification of kaolinite to introduce the adsorption sites for anionic species was reported. The introduction of an anion exchange site was as follows; intercalation of 2-aminoethanol into kaolinite by using dimethyl sulfoxide-kaolinite intercalation compound as a precursor and subsequent hydrochlorination of 2-aminoethanol-kaolinite in 1,4-dioxane. The hydrochlorination of 2-aminoethanol-kaolinite was confirmed by the increase in the basal spacing (0.2 nm, corresponding to the diameter of chlorine) and the appearance of the infrared absorption bands due to ammonium groups. The modified kaolinite adsorbed an anionic dye, tetrakis(p-sulfonatophenyl)porphyrin, from a N,N-dimethylformamide solution. Initial slope of the adsorption isotherm of tetrakis(p-sulfonatophenyl)porphyrin on the hydrochlorinated 2-aminoethanol-kaolinite was steep, showing strong adsorbate-adsorbent interactions. The gallery height after the adsorption of tetrakis(p-sulfonatophenyl)porphyrin was close to the thickness of the porphyrin ring, suggesting that tetrakis(p-sulfonatophenyl)porphyrin was intercalated as a monomolecular layer and that chlorine simultaneously deintercalated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. (a) M. Ogawa, K. Kuroda, Chem. Rev. 95, 399 (1995). doi:10.1021/cr00034a005. (b) M. Ogawa, K. Kuroda, Bull. Chem. Soc. Jpn. 70, 2593 (1997). doi:10.1246/bcsj.70.2593. (c) M. Ogawa Ann. Rep. Sect. C 94, 209 (1998). doi:10.1039/pc094209

  2. M. Ogawa, in Handbook of Layered Materials, ed. by S.M. Auerbach, K.A. Carrado, P.K. Dutta (Marcel Dekker, New York, 2004), p. 191

    Google Scholar 

  3. R. Takenawa, Y. Komori, S. Hayashi, J. Kawamata, K. Kuroda, Chem. Mater. 13, 3741 (2001). doi:10.1021/cm010095j

    Article  CAS  Google Scholar 

  4. R.G. Harris, J.D. Wells, B.B. Johnson, Colloid Surf. A 180, 131 (2001). doi:10.1016/S0927-7757(00)00747-0

    Article  CAS  Google Scholar 

  5. G.W. Brindley, K. Robinson, Nature 156, 661 (1945). doi:10.1038/156661b0

    Article  CAS  Google Scholar 

  6. (a) A. Weiss, W. Thielepape, G. Goring, W. Ritter, H. Schafer, Proc. Int. Clay Conf. Stockh. 1, 287 (1963). (b) A. Weiss, W. Thielepape, H. Orth, Proc. Int. Clay Conf. Jerus. 1, 277 (1963)

  7. R.L. Ledoux, J.L. White, J. Colloid Interface Sci. 21, 127 (1966). doi:10.1016/0095-8522(66)90029-8

    Article  CAS  Google Scholar 

  8. A. Weiss, W. Thielepape, W. Ritter, H. Schafer, G. Goring, Z. Anorg. Chem. 320, 183 (1963). doi:10.1002/zaac.19633200122

    Article  CAS  Google Scholar 

  9. S. Olejnik, L.A.G. Aylmore, A.M. Posner, J.P. Quirk, J. Phys. Chem. 72, 241 (1968). doi:10.1021/j100847a045

    Article  CAS  Google Scholar 

  10. Y. Komori, Y. Sugahara, K. Kuroda, J. Mater. Res. 13, 930 (1998). doi:10.1557/JMR.1998.0128

    Article  CAS  Google Scholar 

  11. J.J. Tunney, C. Detellier, J. Mater. Chem. 6, 1679 (1996). doi:10.1039/jm9960601679

    Article  CAS  Google Scholar 

  12. Y. Komori, H. Enoto, Y. Takenawa, S. Hayashi, Y. Sugahara, K. Kuroda, Langmuir 16, 5506 (2000). doi:10.1021/la991453o

    Article  CAS  Google Scholar 

  13. T. Itagaki, K. Kuroda, J. Mater. Chem. 13, 1064 (2003). doi:10.1039/b211844k

    Article  CAS  Google Scholar 

  14. J. Murakami, T. Itagaki, K. Kuroda, Solid State Ion. 172, 279 (2004). doi:10.1016/j.ssi.2004.02.048

    Article  CAS  Google Scholar 

  15. J.J. Tunney, C. Detellier, Can. J. Chem. 75, 1766 (1997). doi:10.1139/v97-610

    Article  CAS  Google Scholar 

  16. Y. Sugahara, S. Satokawa, K. Kuroda, C. Kato, Clays Clay Miner. 38, 137 (1990). doi:10.1346/CCMN.1990.0380204

    Article  CAS  Google Scholar 

  17. T.A. Elbokl, C. Detellier, Clay Sci. 12, 38 (2005)

    CAS  Google Scholar 

  18. S. Letaief, C. Detellier, Chem Commun (Camb) 2613 (2007). doi:10.1039/b701235g

  19. N.C. Maiti, M. Ravikanth, S. Mazumdar, N. Periasamy, J. Phys. Chem. 99, 17192 (1995). doi:10.1021/j100047a024

    Article  CAS  Google Scholar 

  20. D.L. Akins, S. Ozcelik, H.R. Zhu, C. Guo, J. Phys. Chem. 100, 14390 (1996). doi:10.1021/jp961013v

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas (417) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of the Japanese Government and by CREST (JST). One of the authors (T.O.) also thanks MEXT of the Japanese Government (Grant-in-Aid for Scientific Research on Young Scientists [B]) and Research Foundation for the Electrotechnology of Chubu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ogawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, Y., Okada, T. & Ogawa, M. Adsorption of tetrakis(p-sulfonatophenyl)porphyrin on kaolinite. J Porous Mater 16, 623–629 (2009). https://doi.org/10.1007/s10934-008-9240-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-008-9240-9

Keywords

Navigation