Skip to main content

Advertisement

Log in

Occurrence and significance of a cold-water carbonate pseudomorph in microbialites from a saline lake

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Micron-scale pseudomorphs of calcite after ikaite were discovered in microbialites from Manito Lake, a large hypersaline lake in the Great Plains of western Canada. Although environmental conditions in the lakes of this region (seasonally cold temperatures, high salinities and elevated productivity) suggest that ikaite should be common, this is the first documentation of lacustrine ikaite in Canada and the Great Plains region of North America. The calcite pseudomorphs form a porous dendritic fabric, comprise the interiors of massive shoreline microbialite mounds and pinnacles, and are encased in centimeter-scale, laminated dolomite-aragonite rinds. Because of the limited thermodynamic stability of ikaite at or near freezing temperatures, the psuedomorphs of this mineral provide evidence of an extended cold episode during the first millennium AD. The Manito deposits also show high δ13C values, indicating elevated productivity and δ18O signatures are consistent with precipitation in a cold, somewhat fresher lake than present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allan RJ, Williams JDH, Joshi SR, Warwick WF (1980) Historical changes and relationship to internal loading of sediment phosphorus forms in hypertrophic prairie lakes. J Environ Qual 9:199–206

    Article  Google Scholar 

  • Anthony JW, Bideaux RA, Bladh KW, Nichols MC (eds) (2003) Handbook of Mineralogy Volume V- Borates, Carbonates. Mineral Data Publishing, Tucson Arizona, Sulfates

    Google Scholar 

  • Benson L, White LD, Rye R (1996) Carbonate deposition, Pyramid Lake Subbasin, Nevada: 4. Comparison of the stable isotope values of carbonate deposits (tufas) and the Lahontan lake-level record. Palaeogeogr Palaeoclimatol Palaeoecol 122:45–76

    Article  Google Scholar 

  • Bischoff JL, Fitzpatrick JA, Rosenbauer RJ (1993a) The solubility and stabilization of ikaite (CaCO3·6H2O) from 0 to 25C: environmental and paleoclimatic implications for thinolite tufa. J Geol 101:21–33

    Article  Google Scholar 

  • Bischoff JL, Stine S, Rosenbauer RJ, Fitzpatrick JA, Stafford TW (1993b) Ikaite precipitation by mixing of shoreline springs and lake water: Mono Lake, California, USA. Geochim Cosmochim Ac 57:3855–3865

    Article  Google Scholar 

  • Bishop JL (2005) Hydrated minerals on Mars. In: Tokano T (ed) Water on Mars and Life. Springer-Verlag, Berlin, pp 65–96

    Google Scholar 

  • Buchardt B, Israelson C, Seaman P, Stockmann G (2001) Ikaite tufa towers in Ikka Fjord, Southwest Greenland: their formation by mixing of seawater and alkaline spring water. J Sediment Res 71:176–189

    Article  Google Scholar 

  • Campbell C (1998) Late Holocene lake sedimentology and climate change in southern Alberta, Canada. Quat Res 49:96–101

    Article  Google Scholar 

  • Clegg BF, Clark GH, Chipman ML, Chou M, Walker IR, Tinner W, Hu FS (2010) Six millennia of summer temperature variation based on midge analysis of lake sediments from Alaska. Quaternary Sci Rev 29:3308–3316

    Article  Google Scholar 

  • Council TC, Bennett PC (1993) Geochemistry of ikaite formation at Mono Lake, California: implications for the origin of tufa mounds. Geology 21:971–974

    Article  Google Scholar 

  • Deocampo DM (2010) The geochemistry of continental carbonates. In: Alonso-Zarza AM, Tanner LH (eds) Carbonates in Continental Settings. Geochemistry, Diagenesis and Applications. Elsevier, New York, pp 1-59

  • Dickens B, Brown WE (1970) The crystal structure of calcium carbonate hexahydrate at −120. Inorg Chem 9:480–486

    Article  Google Scholar 

  • Dieckmann GS, Nehrke G, Uhlig C, Gottlicher J, Gerland S, Granskog MA, Thomas DN (2010) Ikaite (CaCO3·6H2O) discovered in Arctic sea ice. The Cryosphere 4:227–230

    Article  Google Scholar 

  • Dixit AS, Hall RI, Leavitt PR, Quinlan R, Smol JP (2000) Effects of sequential depositional basins on lake response to urban and agricultural pollution: a palaeoecological analysis of the Qu’Appelle Valley, Saskatchewan, Canada. Freshwater Biol 43:319–337

    Article  Google Scholar 

  • Donovan JJ, Grimm EC (2007) Episodic struvite deposits in a Northern Great Plains flyway lake: indicators of mid-Holocene drought? The Holocene 17:1155

    Article  Google Scholar 

  • Finkelstein DB, Hay RL, Altaner SP (1999) Origin and diagenesis of lacustrine sediments, upper Oligocene Creede Formation, southwestern Colorado. Geol Soc Am Bull 111:1175–1191

    Article  Google Scholar 

  • Finkelstein DB, Hay RL, Altaner SP (2001) Origin and diagenesis of lacustrine sediments, upper Oligocene Creede Formation, southwestern Colorado: reply. Geol Soc Am Bull 113:541–544

    Article  Google Scholar 

  • Fitzsimons ICW, Harte B, Clark RM (2000) SIMS stable isotope measurement: counting statistics and analytical precision. Mineral Mag 64:59–86

    Article  Google Scholar 

  • Follett RF, Kimble J, Leavitt SW, Pruessner E (2004) Potential use of soil C isotope analyses to evaluate paleoclimate. Soil Sci 169:471–488

    Article  Google Scholar 

  • Greinert J, Derkachev A (2004) Glendonites and methane-derived Mg-calcites in the Sea of Okhotsk, Eastern Siberia: implications of a venting-related ikaite/glendonite formation. Mar Geol 204:129–144

    Article  Google Scholar 

  • Grimm EC, Donovan JJ, Brown KJ (2011) A high-resolution record of climate variability and landscape response from Kettle Lake, northern Great Plains, North America. Quaternary Sci Rev 30:2626–2650

    Article  Google Scholar 

  • Hammer U (1981) 5. Primary production in saline lakes. Hydrobiologia 81:47–57

    Google Scholar 

  • Hansen MO, Buchardt B, Kuhl M, Elberling B (2011) The fate of the submarine ikaite tufa columns in Southwest Greenland under changing climate conditions. J Sediment Res 81:553–561

    Article  Google Scholar 

  • Hesse KF, Küppers H (1983) Refinement of the structure of Ikaite CaCO3·6H2O. Z Kristallogr 163:227–231

    Article  Google Scholar 

  • Hu FS, Ito E, Brown TA, Curry BB, Engstrom DR (2001) From the Cover: pronounced climatic variations in Alaska during the last two millennia. P Natl Acad Sci USA 98:10552–10556

    Article  Google Scholar 

  • Huggett JM, Schultz BP, Shearman DJ, Smith AJ (2005) The petrology of ikaite pseudomorphs and their diagenesis. P Geologist Assoc 116:207–220

    Article  Google Scholar 

  • Ireland TR (2004) SIMS measurement of stable isotopes. In: de Groot PA (ed) Handbook of Stable Isotope Analytical Techniques. Elsevier, Amsterdam, pp 652–691

    Google Scholar 

  • Laird KR, Fritz SC, Grimm EC, Mueller PG (1996) Century-scale paleoclimatic reconstruction from Moon Lake, a closed-basin lake in the northern Great Plains. Limnol Oceanogr 41:890–902

    Article  Google Scholar 

  • Larson D, Crossey LJ (2001) Origin and diagenesis of lacustrine sediments, upper Oligocene Creede Formation, southwestern Colorado: discussion. Geol Soc Am Bull 113:536–540

    Article  Google Scholar 

  • Last WM (1989) Continental brines and evaporites of the northern Great Plains of Canada. Sediment Geol 64:207–221

    Article  Google Scholar 

  • Last WM (2002) Mineralogical analysis of lake sediments. In: Last WM, Smol JP (eds) Tracking Environmental Change Using Lake Sediments, vol 2., Physical and Geochemical Methods. Springer, Dordrecht, pp 143–188

    Chapter  Google Scholar 

  • Last FM, Last WM (2012) Lacustrine carbonates of the northern Great Plains of Canada. Sediment Geol 277–278:1–31

    Article  Google Scholar 

  • Last WM, Schweyen TH (1983) Sedimentology and geochemistry of saline lakes of the northern Great Plains. Hydrobiologia 105:245–263

    Article  Google Scholar 

  • Last WM, Deleqiat J, Greengrass K, Sukhan S (2002) Re-examination of the recent history of meromictic Waldsea Lake, Saskatchewan, Canada. Sediment Geol 148:147–160

    Article  Google Scholar 

  • Last FM, Last WM, Halden NM (2010) Carbonate microbialites and hardgrounds from Manito Lake, an alkaline, hypersaline lake in the northern Great Plains of Canada. Sediment Geol 225:34–49

    Article  Google Scholar 

  • Last FM, Dowsett AEI, Last WM, Read J, Halden NM (2011) Are shoreline microbialites a true reflection of lake history: a case study from western Canada. Geological Society of America Annual Meeting, Abstracts with. Program 43:464

    Google Scholar 

  • Last FM, Last WM, Halden NM (2012) Modern and late Holocene dolomite formation: Manito Lake, Saskatchewan, Canada. Sediment Geol 281:222–237

    Article  Google Scholar 

  • Lemmen DS, Vance RE (eds) (1999) Holocene Climate and Environmental Changes in the Palliser Triangle, Southern Canadian Prairies. Geological Survey of Canada Bulletin 534

  • Leng M, Marshall J (2004) Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Sci Rev 23:811–831

    Article  Google Scholar 

  • Li HC, Ku TL (1997) δ18O - δ13C covariance as a paleohydrological indicator for closed-basin lakes. Palaeogeogr Palaeoclimatol Palaeoecol 133:69–80

    Article  Google Scholar 

  • Ljungqvist FC (2010) A new reconstruction of temperature variability in the extra-tropical Northern Hemisphere during the last two millennia. Geogr Ann A 92A:339–351

    Article  Google Scholar 

  • Lu Z, Rickaby REM, Kennedy H, Kennedy P, Pancost RD, Shaw S, Lennie A, Wellner J, Anderson JB (2012) An ikaite record of late Holocene climate at the Antarctic Peninsula. Earth Planet Sc Lett 325–326:108–115

    Article  Google Scholar 

  • Luzón A, Mayayo M, Pérez A (2009) Stable isotope characterisation of co-existing carbonates from the Holocene Gallocanta lake (NE Spain): palaeolimnological implications. Int J Earth Sci 98:1129–1150

    Article  Google Scholar 

  • McKenzie JA (1985) Carbon Isotopes and Productivity in the Lacustrine and Marine Environment. Chemical Processes in Lakes. John Wiley and Sons, New York New York., pp 99-118

  • Oehlerich M, Mayr CC, Griesshaber E, Lücke A, Oeckler OM, Ohlendorf C, Schmahl WW, Zolitschka B (2012) Ikaite precipitation in a lacustrine enviroment - implications for palaeoclimatic studies using carbonates from Laguna Petrok Aika (Patogonia, Argentina). Quaternary Sci Rev in press: http://dx.doi.org/10.1016/j.quascirev.2012.1005.1024

  • Omelon CR, Pollard WH, Marion GM (2001) Seasonal formation of ikaite (CaCO3·6H2O) in saline spring discharge at Expedition Fiord, Canadian High Arctic: assessing conditional constraints for natural crystal growth. Geochim Cosmochim Ac 65:1429–1437

    Article  Google Scholar 

  • Quinlan R, Leavitt PR, Dixit AS, Hall RI, Smol JP (2002) Landscape effects of climate, agriculture, and urbanization on benthic invertebrate communities of Canadian prairie lakes. Limnol Oceanogr 47:378–391

    Article  Google Scholar 

  • Rawson DS, Moore GE (1944) The saline lakes of Saskatchewan. Can J Res (Series D) 22:141–201

    Article  Google Scholar 

  • Reyes AV, Wiles GC, Smith DJ, Barclay DJ, Allen S, Jackson ST, Larocque S, Laxton S, Lewis D, Calkin P, Clague JJ (2006) Expansion of alpine glaciers in Pacific North America in the first millenium A.D. Geology 34:57–60

    Article  Google Scholar 

  • Rickaby REM, Shaw S, Bennitt G, Kennedy H, Zabel M, Lennie A (2006) Potential of ikaite to record the evolution of oceanic ∂18O. Geology 34:497–500

    Article  Google Scholar 

  • Rosen MR, Arehart GB, Lico MS (2004) Exceptionally fast growth rate of < 100-yr-old tufa, Big Soda Lake, Nevada: implications for using tufa as a paleoclimate proxy. Geology 32:409–412

    Article  Google Scholar 

  • Russell IC (1885) Geological history of Lake Lahontan, a Quaternary lake of northwestern Nevada. United States Survey Monograph 11:288

    Google Scholar 

  • Rysgaard S, Glud RN, Lennert K, Cooper M, Halden N, Leakey RJG, Hawthorne FC, Barber D (2012) Ikaite crystals in melting sea ice - implications for pCO2 and pH levels in Arctic surface waters. The Cryosphere 6:901–908

    Article  Google Scholar 

  • Selleck BW, Carr PF, Jones BG (2007) A review and synthesis of glendonites (pseudomorphs after ikaite) with new data: assessing applicability as recorders of ancient coldwater conditions. J Sediment Res 77:980–991

    Article  Google Scholar 

  • Sharp Z (2007) Principles of Stable Isotope Geochemistry. Pearson Education, Upper Saddle River, New Jersey

    Google Scholar 

  • Shearman DJ, McGugan A, Stein C, Smith AJ (1989) Ikaite, CaCO3·6H2O, precursor of the thinolites in the Quaternary tufas and tufa mounds of the Lahontan and Mono Lake Basins, western United States. Geol Soc Am Bull 101:913–917

    Article  Google Scholar 

  • St. Jacques JM, Cumming BF, Smol JP (2008) A 900-year pollen-inferred temperatures and effective moisture record from varved Lake Mina, west-central Minnesota, USA. Quaternary Sci Rev 27:781–796

    Article  Google Scholar 

  • Stuvier M, Reimer PJ, Reimer R (2012) CALIB Radiocarbon Calibration 6.1.1

  • Suess E, Balzer W, Hesse KF, Muller PJ, Ungerer CA, Wefer G (1982) Calcium carbonate hexahydrate from organic-rich sediments of the Antarctic Shelf: precursors of glendonites. Science 216:1128–1131

    Article  Google Scholar 

  • Swainson IP, Hammond RP (2001) Ikaite, CaCO3·6H2O: cold comfort for glendonites as paleothermometers. Am Mineral 86:1530–1533

    Google Scholar 

  • Swainson IP, Hammond RP (2003) Hydrogen bonding in ikaite, CaCO3·6H2O. Mineral Mag 67:555–562

    Article  Google Scholar 

  • Talbot MR (1990) A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chem Geol 80:261–279

    Google Scholar 

  • Tucker ME (ed) (1988) Techniques in Sedimentology. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Valero-Garcés BL, Kelts K, Ito E (1995) Oxygen and carbon isotope trends and sedimentological evolution of a meromictic and saline lacustrine system: the Holocene Medicine Lake basin, North American Great Plains, USA. Palaeogeogr Palaeoclimatol Palaeoecol 117:253–278

    Article  Google Scholar 

  • Valero-Garcés BL, Laird KR, Fritz SC, Kelts K, Ito E, Grimm EC (1997) Holocene climate in the northern Great Plains inferred from sediment stratigraphy, stable isotopes, carbonate geochemistry, diatoms, and pollen at Moon Lake, North Dakota. Quat Res 48:359–369

    Article  Google Scholar 

  • Vance RE, Clague JJ, Mathewes RW (1993) Holocene paleohydrology of a hypersaline lake in southeastern Alberta. J Paleolimnol 8:103–120

    Article  Google Scholar 

  • van der Kamp G, Keir D, Evans MS (2008) Long-term water level changes in closed-basin lakes of the Canadian prairies. Can Water Resour J 33:23–38

    Google Scholar 

  • Warwick, WF (1982) The paleolimnology of Pasqua Lake, southeastern Saskatchewan. Canada Department of Environment, Inland Waters Directorate, NWRI Technical Report 82-1

  • Wetzel RG (2001) Limnology: Lake and River Ecosystems. Academic Press, San Diego

    Google Scholar 

  • Whiticar MJ, Suess E (1998) The cold carbonate connection between Mono Lake, California and the Bransfield Strait, Antarctica. Aquat Geochem 4:429–454

    Article  Google Scholar 

  • Wiles GC, Barclay DJ, Calkin PE, Lowell TV (2008) Century to millenial-scale temperature variations for the last two-thousand years indicated from glacial gelogical records of southern Alaska. Global Planet Change 60:115–125

    Article  Google Scholar 

  • Woodhouse CA, Overpeck JT (1998) 2000 years of drought variability in the central United States. B Am Meteorol Soc 79:2693–2714

    Article  Google Scholar 

  • Xia J, Haskell BJ, Engstrom DR, Ito E (1997) Holocene climate reconstructions from tandem trace-element and stable-isotope composition of ostracodes from Coldwater Lake, North Dakota, USA. J Paleolimnol 17:85–100

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the Natural Sciences and Engineering Research Council of Canada and the University of Manitoba. The manuscript was improved by the thoughtful comments and suggestions of two anonymous reviewers, and Dr. Mark Brenner. We thank Mr. Sergio Mejia for assistance with SEM, Dr. Rong Liu for assistance with SIMS, and Drs. Anton Chakhmouradian and Aaron Lussier for discussions on ikaite pseudomorphs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fawn M. Last.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Last, F.M., Last, W.M., Fayek, M. et al. Occurrence and significance of a cold-water carbonate pseudomorph in microbialites from a saline lake. J Paleolimnol 50, 505–517 (2013). https://doi.org/10.1007/s10933-013-9742-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-013-9742-6

Keywords

Navigation