Skip to main content

Advertisement

Log in

The relative influences of climate and catchment processes on Holocene lake development in glaciated regions

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Following deglaciation, the long-term pattern of change in diatom communities and the inferred history of the aquatic environment are affected by a hierarchy of environmental controls. These include direct climate impacts on a lake’s thermal and hydrologic budgets, as well as the indirect affects of climate on catchment processes, such as weathering, soil development, microbial activity, fire, and vegetation composition and productivity, which affect the transfer of solutes and particulates from the terrestrial ecosystem into the lake. Some of these catchment influences on lacustrine systems operate as time-dependent patterns of primary succession that are set in motion by glacier retreat. This paper provides a conceptual model of some dominant pathways of catchment influence on long-term lake development in glaciated regions and uses a series of paleolimnological examples from arctic, boreal, and temperate regions to evaluate the relative role of direct climate influences and of catchment processes in affecting the trajectory of aquatic ecosystems during the Holocene in different environmental contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aebly FA, Fritz SC (2009) Paleohydrology of Kangerlussuaq West Greenland during the last ~8,000 year. Holocene 19:91–104

    Article  Google Scholar 

  • Anderson NJ, Leng MJ (2004) Increased aridity during the early Holocene in West Greenland inferred from stable isotopes in laminated-lake sediments. Quat Sci Rev 23:841–849

    Article  Google Scholar 

  • Anderson NJ, Bugmann H, Dearing JA, Gaillard M-J (2006) Linking palaeoenvironmental data and models to understand the past and to predict the future. Trends Ecol Evol 21:696–704

    Article  Google Scholar 

  • Anderson NJ, Brodersen KP, Ryves DB, McGowan S, Johansson LS, Jeppesen E, Leng MJ (2008) Climate versus in-lake processes as controls on the development of community structure in a low-arctic lake (South-West Greenland). Ecosystems 11:307–324

    Article  Google Scholar 

  • Anderson NJ, Liversidge AC, McGowan SM (2012) Lake and catchment response to Holocene environmental change: spatial variability along a climate gradient in southwest Greenland. J Paleolimnol 48:209–222

    Article  Google Scholar 

  • Bakke J, Lie O, Nesje A, Dahl SO, Paasche O (2005) Utilizing physical sediment variability in glacier-fed lakes for continuous glacier reconstructions during the Holocene, northern Folgefonna, western Norway. Holocene 15:161–176

    Article  Google Scholar 

  • Battarbee RW (1991) Recent paleolimnology and diatom-based environmental reconstruction. In: Shane LCK, Cushing EJ (eds) Quaternary landscapes. University of Minnesota Press, Minneapolis, pp 129–174

    Google Scholar 

  • Battarbee RW (2000) Palaeolimnological approaches to climate change, with special regard to the biological record. Quat Sci Rev 19:107–124

    Article  Google Scholar 

  • Battarbee RW, Monteith DT, Juggins S (2005) Reconstructing pre-acidification pH for an acidified Scottish loch: a comparison of palaeolimnological and modeling approaches. Environ Pollut 137:135–149

    Article  Google Scholar 

  • Bennett JR, Cumming BF, Leavitt PR, Chiu M, Smol JP, Szeicz J (2001) Diatom, pollen, and chemical evidence of postglacial climatic change at Big Lake, South-central British Columbia, Canada. Quat Res 55:332–343

    Article  Google Scholar 

  • Berner EK, Berner RA (2012) Global environment: water, air and geochemical cycles, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  • Bigler C, Larocque I, Peglar SM, Birks HJB, Hall RI (2002) Quantitative multi-proxy assessment of long-term patterns of Holocene environmental change from a small lake near Abisko, northern Sweden. Holocene 12:481–496

    Article  Google Scholar 

  • Bigler C, Grahn E, Larocque I, Jeziorski A, Hall R (2003) Holocene environmental change at Lake Njulla (999 m a.s.l.), northern Sweden: a comparison with four small nearby lakes along an altitudinal gradient. J Paleolimnol 29:13–29

    Article  Google Scholar 

  • Birks HJB (1997) Reconstructing environmental impacts of fire from the Holocene sedimentary record. In: Clark JS, Cachier H, Goldammer JG, Stocks B (eds) Sediment records of biomass burning and global change. Springer, Berlin

    Google Scholar 

  • Birks HH, Birks HJB (2006) Multi-proxy studies in palaeolimnology. Veg Hist Archaeobot 15:235–251

    Article  Google Scholar 

  • Birks HH, Battarbee RW, Birks HJB (2000) The development of the aquatic ecosystem at Kråkenes Lake, western Norway, during the late-glacial and early—Holocene–a synthesis. J Paleolimnol 23:91–114

    Article  Google Scholar 

  • Boyle JF (2007) Loss of apatite caused irreversible early-Holocene lake acidification. Holocene 17:543–547

    Article  Google Scholar 

  • Bradshaw E, Jones VJ, Birks HJB, Birks HH (2000) Diatom responses to late-glacial and early Holocene environmental changes at Kråkenes Lake, western Norway. J Paleolimnol 23:21–34

    Article  Google Scholar 

  • Chakraborty K, Finkelstein SA, Desloges JR, Chow NA (2010) Holocene paleoenvironmental changes inferred from diatom assemblages in sediments of Kusawa Lake, Yukon Territory, Canada. Quat Res 74:15–22

    Article  Google Scholar 

  • Chapin FS III, Beldsoe CS (1992) Nitrogen fixation in arctic plant communities. In: Chapin FS III, Jeffries R, Reynolds R, Shaver GR, Svoboda J (eds) Arctic ecosystems in a changing climate: an ecophysiological perspective. Academic Press, New York, pp 301–320

    Google Scholar 

  • Chapin FS, Walker LR, Fastie CR, Sharman LC (1994) Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol Monogr 64:149–175

    Article  Google Scholar 

  • Coolen MJL, Overmann J (1998) Analysis of subfossil molecular remains of purple sulfur bacteria in a lake sediment. Appl Environ Microbiol 64:4513–4521

    Google Scholar 

  • Cremer H, Wagner B, Melles M, Hubberten HW (2001) The postglacial environmental development of Raffles So, East Greenland: inferences from a 10,000 year diatom record. J Paleolimnol 26:67–87

    Article  Google Scholar 

  • Dearing JA (1991) Lake sediment records of erosional processes. Hydrobiologia 214:99–106

    Article  Google Scholar 

  • Engstrom DR, Fritz SC (2006) Coupling between primary terrestrial succession and the trophic development of lakes at Glacier Bay, Alaska. J Paleolimnol 35:873–880

    Article  Google Scholar 

  • Engstrom DR, Wright HE (1984) Chemical stratigraphy of lake sediments as a record of environmental change. In: Haworth EY, Lund JWG (eds) Lake sediments and environmental history. University of Minnesota Press, Minneapolis, pp 11–67

    Google Scholar 

  • Engstrom DR, Fritz SC, Almendinger JE, Juggins S (2000) Chemical and biological trends during lake evolution in recently deglaciated terrain. Nature (Lond) 408:161–166

    Article  Google Scholar 

  • Fee EJ, Hecky RE, Kasian SEM, Cruikshank DR (1995) Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnol Oceanogr 41:912–920

    Article  Google Scholar 

  • Filippelli G, Souch C (1999) Effects of climate and landscape development on the terrestrial phosphorus cycle. Geology 27:171–174

    Article  Google Scholar 

  • Florin MB (1970) Late-glacial diatoms of Kirchner Marsh, southeastern Minnesota. Nova Hedwigia Beih 31:667–756

    Google Scholar 

  • Ford MSJ (1990) A 10,000-yr. history of natural ecosystem acidification. Ecol Monogr 60:57–89

    Article  Google Scholar 

  • Fritz SC (2008) Deciphering climatic history from lake sediments. J Paleolimnol 39:5–16

    Article  Google Scholar 

  • Fritz SC, Metcalfe SE, Dean W (2000) Holocene climate patterns in the Americas from paleolimnological records. In: Markgraf V (ed) Interhemispheric climate linkages. Academic Press, New York, pp 241–263

    Google Scholar 

  • Fritz SC, Juggins S, Engstrom DR (2004) Patterns of early lake evolution in boreal landscapes: a comparison of stratigraphic inferences with a modern chronosequence in Glacier Bay, Alaska. Holocene 14:828–840

    Article  Google Scholar 

  • Fritz SC, Cumming BF, Gasse F, Laird KR (2010) Diatoms as indicators of hydrologic and climatic change in saline lakes. In: Smol JP, Stoermer EF (eds) The diatoms: applications to environmental and earth sciences, 2nd edn. Cambridge University Press, London, pp 186–208

    Chapter  Google Scholar 

  • Gavin DG, Henderson AC, Westover KS, Fritz SC, Walker IR, Leng MJ, Hu FS (2011) Abrupt Holocene climate change and potential response to solar forcing in western Canada. Quat Sci Rev 30:1243–1255

    Article  Google Scholar 

  • Goldman CR (1961) The contribution of alder trees (Alnus tenuifolia) to the primary productivity of Castle Lake, California. Ecology 42:282–288

    Article  Google Scholar 

  • Hall K, Thorn CE, Matsuoka N, Prick A (2002) Weathering in cold regions:some thoughts and perspectives. Prog Phys Geog 26:577–603

    Article  Google Scholar 

  • Hasholt B, Søgaard H (1978) Et forsøg på en klimatisk-hydrologisk regionsinddeling af Holsteinborgs Kommune (Sisimiut). Geografisk Tidsskrift 77:72–92

    Google Scholar 

  • Haworth EY (1976) Two late-glacial (Late Devensian) diatom assemblage profiles from northern Scotland. New Phytol 77:227–256

    Article  Google Scholar 

  • Heggen MP, Birks HH, Anderson NJ (2010) Long-term ecosystem dynamics of a small lake and its catchment in West Greenland. Holocene 20:1207–1222

    Article  Google Scholar 

  • Hobbie SE, Nadelhoffer JK, Hogberg P (2002) A synthesis: the role of nutrients as constraints on carbon balances in boreal and arctic regions. Plant Soil 242:163–170

    Article  Google Scholar 

  • Hodson A, Anesio AM, Tranter M, Fountain A, Osborn M, Priscu J, Laybourn-Parry J, Sattler B (2008) Glacial ecosystems. Ecol Monogr 78:41–67

    Article  Google Scholar 

  • Hu F, Finney B, Brubaker LB (2001) Effects of Holocene Alnus expansion on aquatic productivity, nitrogen cycling, and soil development in southwestern Alaska. Ecosystems 4:358–368

    Article  Google Scholar 

  • Iverson J (1964) Retrogressive vegetation succession the post-glacial. J Ecol 52:59–70

    Google Scholar 

  • Jones JB, Petrone KC, Finlay JC, Hinzman LD, Bolton WR (2005) Nitrogen loss from watersheds of interior Alaska underlain with discontinuous permafrost. Geophys Res Lett 32:L02401. doi:10.1029/2004GL021734

    Article  Google Scholar 

  • Jones VJ, Solovieva N, Self AE, McGowan S, Rosen P, Salonen JS, Seppa H, Valiranta M, Parrott E, Brooks SJ (2011) The influence of Holocene tree-line advance and retreat on an arctic lake ecosystem: a multi-proxy study from Kharinei Lake, North Eastern European Russia. J Paleolimnol 46:123–137

    Article  Google Scholar 

  • Juggins S (2013) Quantitative reconstructions in palaeolimnology: new paradigm or sick science? Quat Sci Rev (in press)

  • Karlsson J, Bystrom P, Ask J, Ask P, Persson L, Jansson M (2009) Light limitation of nutrient-poor lake ecosystems. Nature (Lond) 460:506–509

    Article  Google Scholar 

  • Kaufman DS (2012) Introduction to the JOPL Special Issue, “Holocene paleoenvironmental records from Arctic lake sediment”. J Paleolimnol 41:1–8

    Article  Google Scholar 

  • Laird KR, Fritz SC, Grimm E, Cumming BF (1998) Early Holocene limnological and climatic variability in the northern Great Plains. Holocene 8:275–285

    Article  Google Scholar 

  • Lantz TC, Gergel SE, Kokelj SV (2010) Spatial heterogeneity in the shrub tundra ecotone in the Mackenzie Delta Region, Northwest Territories: implications for arctic environmental change. Ecosystems 13:194–204

    Article  Google Scholar 

  • Leavitt PR, Fritz SC, Anderson NJ, Baker PA, Blenkner T, Bunting L, Catalan J, Conley D, Hobbs W, Jeppesen E, Korhola A, McGowan S, Rühland K, Rusak J, Solovieva N, Werne J (2009) Paleolimnological evidence for the effects on lakes of energy and mass transfer by climate and humans. Limnol Oceanogr 54:2330–2348

    Article  Google Scholar 

  • Lotter AF (2001) The palaeolimnology of Soppensee (Central Switzerland), as evidenced by diatom, pollen, and fossil-pigment analyses. J Paleolimnol 25:65–79

    Article  Google Scholar 

  • Lotter AF, Anderson NJ (2012) Limnological response to environmental changes at inter-annual to decadal timescales. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Data handling and numerical techniques. Springer, Berlin

    Google Scholar 

  • McGowan S, Juhler RK, Anderson NJ (2008) Autotrophic response to lake age, conductivity and temperature in two West Greenland lakes. J Paleolimnol 39:301–317

    Article  Google Scholar 

  • Michelutti N, Wolfe AP, Briner JP, Miller GH (2007) Climatically controlled chemical and biological development in Arctic lakes. J Geophy Res 112:(no. G3)

  • Neff JC, Ballantyne AP, Farmer GL, Mahowald ML, Conroy JL, Landry CC, Overpeck JT, Painter TH, Lawrence CR, Reynold RL (2008) Increasing eolian dust deposition in the western United States linked to human activity. Nat Geosci 1:189–195. doi:10.1038/ngeo133

    Article  Google Scholar 

  • Norton SA, Perry RH, Saros JE, Jacobson GL, Fernandez IJ, Kopacek J, Wilson TA, San Clements MD (2011) The controls on phosphorus availability in a Boreal lake ecosystem since deglaciation. J Paleolimnol 46:107–122

    Article  Google Scholar 

  • Odgaard BV (1993) Wind-determined sediment distribution and Holocene sediment yield in a small, Danish, kettle lake. J Paleolimnol 8:3–13

    Google Scholar 

  • Perren BB, Douglas MSV, Anderson NJ (2009) Diatoms reveal complex spatial and temporal patterns of recent limnological change in West Greenland. J Paleolimnol 42:233–247

    Article  Google Scholar 

  • Perren B, Anderson NJ, Douglas M, Fritz SC (2012) The influence of temperature, moisture, and eolian activity on Holocene lake development in West Greenland. J Paleolimnol 48:223–239. doi:10.1007/s10933-012-9613-6

    Article  Google Scholar 

  • Pienitz R, Smol JP, MacDonald GM (1999) Paleolimnological reconstruction of Holocene climatic trends from two boreal treeline lakes, Northwest Territories, Canada. Arct Antarct Alp Res 31:82–93

    Article  Google Scholar 

  • Psenner R (1999) Living in a dusty world: airborne dust as a key factor for alpine lakes. Water Air Soil Pollut 112:217–227

    Article  Google Scholar 

  • Renberg I (1990) A 12,600 year perspective on the acidification of Lilla Oresjon, southwest Sweden. Philos Trans R Soc Lond B Biol Sci 327:357–361

    Article  Google Scholar 

  • Reynolds CS (2006) Ecology of phytoplankton. Cambridge University Press, Cambridge 552 pp

    Book  Google Scholar 

  • Rosen P (2005) Total organic carbon (TOC) of lake water during the Holocene inferred from lake sediments and near-infrared spectroscopy (NIRS) in eight lakes from northern Sweden. Biogeochemistry 76:503–516

    Article  Google Scholar 

  • Rühland K, Paterson AM, Smol JP (2008) Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Glob Change Biol 14:1–15

    Google Scholar 

  • Saros JE, Fritz SC (2000) Nutrients as a link between ionic concentration/composition and diatom distributions in saline lakes. J Paleolimnol 23:449–453

    Article  Google Scholar 

  • Saros JE, Stone JR, Pederson GT, Siemmons KEH, Spanbauer T, Schliep A, Cahl D, Williamson CE, Engstrom DE (2012) Climate-induced changes in lake ecosystem structure inferred from coupled neo- and paleo-ecological approaches. Ecology 93:2155–2164

    Article  Google Scholar 

  • Schmidt R, Kamenik C, Kaiblinger C, Hetzel M (2004) Tracking Holocene environmental changes in an alpine lake sediment core: application of regional diatom calibration, geochemistry, and pollen. J Paleolimnol 32:177–196

    Article  Google Scholar 

  • Seitzinger S, Harrison JA, Bohlke JK (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16:2064–2090

    Article  Google Scholar 

  • Smol JP, Douglas MSV (2007) From controversy to consensus: making the case for recent climate change in the Arctic using lake sediments. Frontiers in Ecology and Environment 5:466–474

    Article  Google Scholar 

  • Sobek SLJ, Tranvik J, Cole JJ (2005) Temperature independence of carbon dioxide supersaturation in global lakes. Global Biogeochemical Cycles 19:GB2003,doi: 10.1029/2004GB002264

  • Spring S, Schulze R, Overmann J, Schleifer KH (2000) Identification and characterization of ecologically significant prokaryotes in the sediment of freshwater lakes: molecular and cultivation studies. FEMS Microbiol Rev 24:573–590

    Article  Google Scholar 

  • Stefan HG, Fang X (1997) Simulated climate change effects on ice and snow covers on lakes in a temperate region. Cold Reg Sci Technol 25:137–152

    Article  Google Scholar 

  • Stone JR, Fritz SC (2006) Multi-decadal drought frequency and Holocene drought instability in the northern Rocky Mountains. Geology 34:409–412

    Article  Google Scholar 

  • Tape K, Sturm M, Racine C (2006) The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob Change Biol 12:686–702

    Article  Google Scholar 

  • Tye AM, Heaton THE (2007) Chemical and isotopic characteristics of weathering and nitrogen release in non-glacial drainage waters on Arctic tundra. Geochim Cosmochim Acta 71:4188–4205

    Article  Google Scholar 

  • Vadeboncoeur Y, Jeppesen E, Vander Zanden MJ, Schierup HH, Christoffersen K, Lodge DM (2003) From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnol Oceanogr 48:1408–1418

    Article  Google Scholar 

  • Westover KS, Fritz SC, Blyakharchuk TA, Wright HE (2006) Diatom paleolimnological record of environmental change in the Altai Mountains, Siberia. J Paleolimnol 35:519–541

    Article  Google Scholar 

  • Whitehead DR, Charles DF, Jackson ST, Smol JP, Engstrom DR (1989) The developmental history of Adirondack (NY) lakes. J Paleolimnol 2:185–206

    Article  Google Scholar 

  • Whitlock C, Dean WE, Fritz SC, Stevens LR, Stone JR, Power MJ, Rosenbaum JR, Pierce KL, Bracht-Flyr B (2012) Holocene seasonal variability inferred from multiple proxy records from Crevice Lake, Yellowstone National Park, USA. Palaeogeogr Palaeoclimatol Palaeoecol 331–332:90–103

    Article  Google Scholar 

  • Willemse NW, Koster EA, Hoogakker B, van Tatenhove FGM (2003) A continuous record of Holocene eolian activity in West Greenland. Quat Res 59:322–334

    Article  Google Scholar 

  • Williamson CE, Morris DP, Pace ML, Olson OG (1999) Dissolved organic carbon and nutrients as regulators of lake ecosystems: resurrection of a more integrated paradigm. Limnol Oceanogr 44:795–803

    Article  Google Scholar 

  • Williamson CE, Olson OG, Lott SE, Walker ND, Engstrom DR, Hargreaves BR (2001) Ultraviolet radiation and zooplankton community structure following deglaciation in Glacier Bay, Alaska. Ecology 82:1748–1760

    Article  Google Scholar 

  • Wilson CR, Michelutti N, Cooke CA, Briner JP, Wolfe AP, Smol JP (2012) Arctic lake ontogeny across multiple glacial cycles. Quat Sci Rev 31:112–126

    Article  Google Scholar 

  • Wolfe AP (2002) Climate modulates the acidity of Arctic lakes on millennial time scales. Geology 30:215–218

    Article  Google Scholar 

  • Wookey PA, Aerts R, Bardgett RD, Baptist F, Brathen KA, Cornelissen JHC, Gough L, Hartley IP, Hopkins DW, Lavorel S, Shaver GR (2009) Ecosystem feedbacks and cascade processes: understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Glob Change Biol 15:1153–1172

    Article  Google Scholar 

Download references

Acknowledgments

This manuscript is dedicated to Rick Battarbee, who was instrumental in catalyzing each of our interests in diatoms and lakes. We also acknowledge Dan Engstrom for many discussions over the years on lake ontogeny. We are grateful to Bianca Perren and Hilary Birks for providing their data from SS16 and SS49, which are plotted in Fig. 3. The preparation of this manuscript was funded in part by NSF EAR08-16576 to Fritz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Fritz.

Additional information

A celebration of Prof. Rick Battarbee's contributions to palaeolimnology, edited by Holmes et al.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fritz, S.C., Anderson, N.J. The relative influences of climate and catchment processes on Holocene lake development in glaciated regions. J Paleolimnol 49, 349–362 (2013). https://doi.org/10.1007/s10933-013-9684-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-013-9684-z

Keywords

Navigation