Skip to main content

Advertisement

Log in

Development and application of sedimentary pigments for assessing effects of climatic and environmental changes on subarctic lakes in northern Sweden

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

A surface-sediment survey of pigments in 100 lakes in the Scandes Mountains, northern Sweden, was combined with a reconstruction of Holocene sedimentary pigments from Lake Seukokjaure to assess the major factors regulating phototrophic communities, and how these controls may have changed during the period from the deglaciation (~9700 cal. years BP) to the present. The study area covers a pronounced gradient of temperature and precipitation, and encompasses the subarctic tree line, an important ecotonal boundary in this region. Lake Seukokjaure is located in a presently treeless basin close to the modern tree line. The spatial survey of sedimentary pigments was analyzed using principle components analysis (PCA) and redundancy analysis (RDA). PCA explained 73–83% of variance in pigment abundance and composition, whereas RDA explained 22–32% of variation in fossil assemblages. Dissolved organic carbon (DOC) content of lake water, sediment δ13C, maximum lake depth, elevation and lake-water conductivity were all identified as environmental variables with significant association with pigment abundances in the spatial survey, although phototrophic communities of lakes situated in different vegetation zones (alpine, birch, conifer/birch) were incompletely distinguished by the ordinations. In the RDAs, the primary pigment variability occurred along a production gradient that was correlated negatively to water-column DOC content and δ13C signature of sediments. This pattern suggested that the important controls of primary production were light regime and terrestrial supplies of 13C-depleted carbon. In contrast, depth, elevation and conductivity were found to be more important for the differentiation of the phototrophic community composition. Application of these spatial survey results to the Holocene sediment record of Lake Seukokjaure demonstrated the importance of DOC for the temporal development of the lake, from an early state of high production to a period of slight oligotrophication. In general, the algal changes were regulated by the interaction of DOC and conductivity, although transitions in the phototrophic community during the late Holocene were less easily interpreted. Terrestrial vegetation development thus appears to be of utmost importance for the regulation of primary production in oligotrophic alpine and subarctic lakes and climate impacts on lakes, whereas other basin-specific factors may control the ontogeny of algal community composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alexandersson H, Karlström CE (2001) Temperaturen och nederbörden i Sverige 1961–1990. Referensnormaler—utgåva 2 (Temperature and precipitation in Sweden, 1961–1990. Reference normals—second edition). SMHI Swedish Meteorological and Hydrological Institute, Meteorologi 99, Norrköbing, Sweden

  • Barnekow L (1999) Holocene vegetation dynamics and climate changes in the Torneträsk area, northern Sweden. Lundqua Thesis 43, Lund University, Sweden

  • Barnekow L, Possnert G, Sandgren P (1998) AMS C-14 chronologies of Holocene lake sediments in the Abisko area, northern Sweden—a comparison between dated bulk sediment and macrofossil samples. GFF 120:59–67

    Article  Google Scholar 

  • Battarbee RW (2000) Palaeolimnological approaches to climate change, with special regard to the biological record. Quat Sci Rev 19:107–124. doi:10.1016/S0277-3791(99)00057-8

    Article  Google Scholar 

  • Bergstrom AK, Blomqvist P, Jansson M (2005) Effects of atmospheric nitrogen deposition on nutrient limitation and phytoplankton biomass in unproductive Swedish lakes. Limnol Oceanogr 50:987–994

    Google Scholar 

  • Bigler C, Hall RI (2002) Diatoms as indicators of climatic and limnological change in Swedish Lapland: a 100-lake calibration set and its validation for paleoecological reconstructions. J Paleolimnol 27:97–115. doi:10.1023/A:1013562325326

    Article  Google Scholar 

  • Bigler C, Hall R, Renberg I (2000) A diatom-training set for palaeoclimatic inferences from lakes in northern Sweden. Verh Int Ver Limnol 27:1–9

    Google Scholar 

  • Bigler C, Grahn E, Larocque I, Jeziorski A, Hall R (2003) Holocene environmental change at Lake Njulla (999 m asl), northern Sweden: a comparison with four small nearby lakes along an altitudinal gradient. J Paleolimnol 29:13–29. doi:10.1023/A:1022850925937

    Article  Google Scholar 

  • Birks HJB (1995) Quantitative paleoenvironmental reconstructions. In: Maddy D, Brew JS (eds) Statistical modelling of quaternary science data. Quaternary Research Association XII, Cambridge, pp 161–254

    Google Scholar 

  • Björk-Ramberg S (1983) Production of epipelic algae before and during lake fertilization in a subarctic lake. Holarct Ecol 6:349–355

    Google Scholar 

  • Björk-Ramberg S (1984) Species composition and biomass of an epipelic algal community in a subarctic lake before and during lake fertilization. Holarct Ecol 7:195–201

    Google Scholar 

  • Blenckner T (2005) A conceptual model of climate-related effects on lake ecosystems. Hydrobiolgia 533:1–14. doi:10.1007/s10750-004-1463-4

    Article  Google Scholar 

  • Bonilla S, Villeneuve V, Vincent WF (2005) Benthic and planktonic algal communities in a high Arctic lake: pigment structure and contrasting responses to nutrient enrichment. J Phycol 41:1120–1130. doi:10.1111/j.1529-8817.2005.00154.x

    Article  Google Scholar 

  • Boyle JF (2007) Loss of apatite caused irreversible early-Holocene lake acidification. Holocene 17:543–547. doi:10.1177/0959683607077046

    Article  Google Scholar 

  • Brutemark A, Rengefors K, Anderson NJ (2006) An experimental investigation of phytoplankton nutrient limitation in two contrasting low arctic lakes. Polar Biol 29:487–494. doi:10.1007/s00300-005-0079-0

    Article  Google Scholar 

  • Buchaca T, Catalan J (2007) Factors influencing the variability of pigments in the surface sediments of mountain lakes. Freshw Biol 52:1365–1379. doi:10.1111/j.1365-2427.2007.01774.x

    Article  Google Scholar 

  • Buffan-Dubau E, Carman KR (2000) Extraction of benthic microalgal pigments for HPLC analyses. Mar Ecol Prog Ser 204:293–297. doi:10.3354/meps204293

    Article  Google Scholar 

  • Bunting L, Leavitt PR, Gibson CE, McGee EJ, Hall VA (2007) Degradation of water quality in Lough Neagh, Northern Ireland, by diffuse nitrogen flux from a phosphorus-rich catchment. Limnol Oceanogr 52:354–369

    Google Scholar 

  • Cartaxana P, Brotas V (2003) Effects of extraction on HPLC quantification of major pigments from benthic microalgae. Arch Hydrobiol 157:339–349. doi:10.1127/0003-9136/2003/0157-0339

    Article  Google Scholar 

  • Clarke KR, Green RH (1988) Statistical design and analysis for a ‘biological effects’ study. Mar Ecol Prog Ser 46:213–226. doi:10.3354/meps046213

    Article  Google Scholar 

  • Conley DJ (1998) An interlaboratory comparison for the measurement of biogenic silica in sediments. Mar Chem 63:39–48. doi:10.1016/S0304-4203(98)00049-8

    Article  Google Scholar 

  • Conley DJ, Schelske CL (2001) Biogenic silica. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Vol 3: terrestrial, algal, and siliceous indicators. Kluwer, Dordrecht, pp 281–293

    Google Scholar 

  • Cuddington K, Leavitt PR (1999) An individual-based model of pigment flux in lakes: implications for organic biogeochemistry and paleoecology. Can J Fish Aquat Sci 56:1964–1977. doi:10.1139/cjfas-56-10-1964

    Article  Google Scholar 

  • del Giorgio PA, Peters RH (1994) Patterns in planktonic R:R ratios in lakes: influence of lake trophy and dissolved organic carbon. Limnol Oceanogr 39:772–787

    Google Scholar 

  • DeMaster DJ (1981) The supply and accumulation of silica in the marine environment. Geochim Cosmochim Acta 45:1715–1732. doi:10.1016/0016-7037(81)90006-5

    Article  Google Scholar 

  • Douglas MSV, Hamilton PB, Pienitz R, Smol JP (2004) Algal indicators of environmental change in Arctic and Antarctic lakes and ponds. In: Plenitz R, Douglas MSV, Smol JP (eds) Long-term environmental change in Arctic and Antarctic lakes, vol 8. Springer, Dordrecht, pp 117–157

    Google Scholar 

  • Engstrom DR, Fritz SC (2006) Coupling between primary terrestrial succession and the trophic development of lakes at Glacier Bay, Alaska. J Paleolimnol 35:873–880. doi:10.1007/s10933-005-5858-7

    Article  Google Scholar 

  • Engstrom DR, Fritz SC, Almendinger JE, Juggins S (2000) Chemical and biological trends during lake evolution in recently deglaciated terrain. Nature 408:161–166. doi:10.1038/35041500

    Article  Google Scholar 

  • Evans CD, Chapman PJ, Clark JM, Monteith DT, Cresser MS (2006) Alternative explanations for rising dissolved organic carbon export from organic soils. Glob Chang Biol 12:1–10. doi:10.1111/j.1365-2486.2006.01241.x

    Article  Google Scholar 

  • Forsström L (2006) Phytoplankton ecology of subarctic lakes in Finnish Lapland. Kilpisjärvi notes 19, PhD Thesis, University of Helsinki

  • Forsstrom L, Sorvari S, Korhola A, Rautio M (2005) Seasonality of phytoplankton in subarctic Lake Saanajarvi in NW Finnish Lapland. Polar Biol 28:846–861. doi:10.1007/s00300-005-0008-2

    Article  Google Scholar 

  • Freeman C, Evans CD, Monteith DT, Reynolds B, Fenner N (2001) Export of organic carbon from peat soils. Nature 412:785. doi:10.1038/35090628

    Article  Google Scholar 

  • Fritz SC, Engstrom DR, Juggins S (2004) Patterns of early lake evolution in boreal landscapes: a comparison of stratigraphic inferences with a modern chronosequence in Glacier Bay, Alaska. Holocene 14:828–840. doi:10.1191/0959683604hl763rp

    Article  Google Scholar 

  • Grimm EC (1987) CONISS: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35. doi:10.1016/0098-3004(87)90022-7

    Article  Google Scholar 

  • Hall RI, Leavitt PR, Quinlan R, Dixit AS, Smol JP (1999) Effects of agriculture, urbanization, and climate on water quality in the northern Great Plains. Limnol Oceanogr 44:739–756

    Google Scholar 

  • Hammarlund D, Velle G, Wolfe BB, Edwards TWD, Barnekow L, Bergman J, Holmgren S, Lamme S, Snowball I, Wohlfarth B, Possnert G (2004) Palaeolimnological and sedimentary responses to Holocene forest retreat in the Scandes Mountains, west-central Sweden. Holocene 14:862–876. doi:10.1191/0959683604hl756rp

    Article  Google Scholar 

  • Hodgson DA, Vyverman W, Verleyen E, Sabbe K, Leavitt PR, Taton A, Squier AH, Keely BJ (2004) Environmental factors influencing the pigment composition of in situ benthic microbial communities in east Antarctic lakes. Aquat Microb Ecol 37:247–263. doi:10.3354/ame037247

    Article  Google Scholar 

  • Holmgren SK (1984) Experimental lake fertilization in the Kuokkel area, northern Sweden. Phytoplankton biomass and algal composition in natural and fertilized subarctic lakes. Int Rev ges Hydrobiol 69:781–817

    Article  Google Scholar 

  • Jackson TA, Hecky RE (1980) Depression of primary productivity by humic matter in lake and reservoir waters of the boreal forest zone. Can J Fish Aquat Sci 37:2300–2317. doi:10.1139/f80-053

    Article  Google Scholar 

  • Jansson M, Blomqvist P, Jonsson A, Bergstrom AK (1996) Nutrient limitation of bacterioplankton, autotrophic and mixotrophic phytoplankton, and heterotrophic nanoflagellates in Lake Ortrasket. Limnol Oceanogr 41:1552–1559

    Google Scholar 

  • Jansson M, Bergstrom AK, Blomqvist P, Drakare S (2000) Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes. Ecology 81:3250–3255

    Google Scholar 

  • Jeffrey SW, Mantoura RFC, Wright SW (1997) Phytoplankton pigments in oceanography. UNESCO Publishing, Paris

    Google Scholar 

  • Jones RI (1992) The influence of humic substances on lacustrine planktonic food chains. Hydrobiologia 229:73–91

    Google Scholar 

  • Karlsson J, Jansson M, Jonsson A (2002) Similar relationships between pelagic primary and bacterial production in clearwater and humic lakes. Ecology 83:2902–2910

    Article  Google Scholar 

  • Karlsson J, Jonsson A, Jansson M (2005) Productivity of high-latitude lakes: climate effect inferred from altitude gradient. Glob Chang Biol 11:710–715. doi:10.1111/j.1365-2486.2005.00945.x

    Article  Google Scholar 

  • Korhola A, Sorvari S, Rautio M, Appleby PG, Dearing JA, Hu Y, Rose N, Lami A, Cameron NG (2002) A multi-proxy analysis of climate impacts on the recent development of subarctic Lake Saanajarvi in Finnish Lapland. J Paleolimnol 28:59–77. doi:10.1023/A:1020371902214

    Article  Google Scholar 

  • Laaksonen K (1976) The dependence of mean air temperatures upon latitude and altitude in Fennoscandia (1921–1950). Ann Acad Sci Fenn Ser A III 119:5–19

    Google Scholar 

  • Larocque I, Hall RI, Grahn E (2001) Chironomids as indicators of climate change: a 100-lake training set from a subarctic region of northern Sweden (Lapland). J Paleolimnol 26:307–322. doi:10.1023/A:1017524101783

    Article  Google Scholar 

  • Leavitt PR (1993) A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance. J Paleolimnol 9:109–127. doi:10.1007/BF00677513

    Article  Google Scholar 

  • Leavitt PR, Findlay DL (1994) Comparison of fossil pigments with 20 years of phytoplankton data from eutrophic lake 227, experimental lakes area, Ontario. Can J Fish Aquat Sci 51:2286–2299. doi:10.1139/f94-232

    Article  Google Scholar 

  • Leavitt PR, Hodgson DA (2001) Sedimentary pigments. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Vol 3: terrestrial, algal and siliceous indicators. Kluwer, Dordrecht, pp 295–325

    Google Scholar 

  • Leavitt PR, Vinebrooke RD, Donald DB, Smol JP, Schindler DW (1997) Past ultraviolet radiation environments in lakes derived from fossil pigments. Nature 388:457–459. doi:10.1038/41296

    Article  Google Scholar 

  • Leavitt PR, Findlay DL, Hall RI, Smol JP (1999) Algal responses to dissolved organic carbon loss and pH decline during whole-lake acidification: evidence from paleolimnology. Limnol Oceanogr 44:757–773

    Google Scholar 

  • Leavitt PR, Cumming BF, Smol JP, Reasoner M, Plenitz R, Hodgson DA (2003) Climatic control of ultraviolet radiation effects on lakes. Limnol Oceanogr 48:2062–2069

    Google Scholar 

  • Leavitt PR, Brock CS, Ebel C, Patoine A (2006) Landscape-scale effects of urban nitrogen on a chain of freshwater lakes in central North America. Limnol Oceanogr 51:2262–2277

    Google Scholar 

  • Lundqvist J (1998) Weichsel-istidens huvudfas. In: Fredén C (ed) Berg och Jord. Sveriges Nationalatlas Almqvist and Wiksell, Stockholm

    Google Scholar 

  • McGowan S, Juhler RK, Anderson NJ (2008) Autotrophic response to lake age, conductivity and temperature in two West Greenland lakes. J Paleolimnol 39:301–317. doi:10.1007/s10933-007-9105-2

    Article  Google Scholar 

  • Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302. doi:10.1016/0009-2541(94)90059-0

    Article  Google Scholar 

  • O’Brien WJ, Barfield M, Bettez N, Hershey AE, Hobbie JE, Kipphut G, Kling G, Miller MC (2005) Long-term response and recovery to nutrient addition of a partitioned Arctic lake. Freshw Biol 50:731–741. doi:10.1111/j.1365-2427.2005.01354.x

    Article  Google Scholar 

  • Pålsson C, Kritzberg ES, Christoffersen K, Graneli W (2005) Net heterotrophy in Faroe Islands clear-water lakes: causes and consequences for bacterioplankton and phytoplankton. Freshw Biol 50:2011–2020. doi:10.1111/j.1365-2427.2005.01440.x

    Article  Google Scholar 

  • Persson G, Holmgren SK, Jansson M, Lundgren A, Nyman B, Solander D, Ånell C (1975) Phosphorus and nitrogen and the regulation of lake ecosystems: experimental approaches in subarctic Sweden. In: Proceedings of the Circumpolar Conference on Northern Ecology, Ottawa, Canada, pp 3.3–3.19

  • Pham SV, Leavitt PR, McGowan S, Peres-Neto P (2008) Spatial variability of climate and land use effects on lakes of the northern Great Plains. Limnol Oceanogr 53:728–742

    Google Scholar 

  • Pienitz R, Smol JP, Last WM, Leavitt PR, Cumming BF (2000) Multi-proxy Holocene palaeoclimatic record from a saline lake in the Canadian Subarctic. Holocene 10:673–686. doi:10.1191/09596830094935

    Article  Google Scholar 

  • Quinlan R, Douglas MSV, Smol JP (2005) Food web changes in arctic ecosystems related to climate warming. Glob Chang Biol 11:1381–1386. doi:10.1111/j.1365-2486.2005.00981.x

    Article  Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormacm G, Manning S, Ramsey CB, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1029–1058

    Google Scholar 

  • Renberg I (1991) The HON-Kajak sediment corer. J Paleolimnol 6:167–170

    Google Scholar 

  • Reuss N, Conley DJ (2005) Effects of sediment storage conditions on pigment analyses. Limnol Oceanogr Methods 3:477–487

    Google Scholar 

  • Rosén P (2005) Total organic carbon (TOC) of lake water during the Holocene inferred from lake sediments and near-infrared spectroscopy (NIRS) in eight lakes from northern Sweden. Biogeochemistry 76:503–516. doi:10.1007/s10533-005-8829-1

    Article  Google Scholar 

  • Rosén P, Hall R, Korsman T, Renberg I (2000) Diatom transfer-functions for quantifying past air temperature, pH and total organic carbon concentration from lakes in northern Sweden. J Paleolimnol 24:109–123. doi:10.1023/A:1008128014721

    Article  Google Scholar 

  • Rosén P, Segerstrom U, Eriksson L, Renberg I (2003) Do diatom, chironomid, and pollen records consistently infer Holocene July air temperature? A comparison using sediment cores from four alpine lakes in northern Sweden. Arct Antarct Alp Res 35:279–290. doi:10.1657/1523-0430(2003)035[0279:DDCAPR]2.0.CO;2

    Article  Google Scholar 

  • Routh J, Meyers PA, Gustafsson Ö, Baskran M, Hallberg R, Schöldström A (2004) Sedimentary geochemical record of human-induced environmental changes in the Lake Brunnsviken watershed, Sweden. Limnol Oceanogr 49:1560–1569

    Google Scholar 

  • Schindler DW (1997) Widespread effects of climate warming on freshwater ecosystems in north America. Hydrol Process 11:1043–1067. doi:10.1002/(SICI)1099-1085(19970630)11:8<1043::AID-HYP517>3.0.CO;2-5

    Article  Google Scholar 

  • Sheath RG (1986) Seasonality of phytoplankton in northern tundra ponds. Hydrobiologia 138:75–83. doi:10.1007/BF00027233

    Article  Google Scholar 

  • Smol JP, Cumming BF (2000) Tracking long-term changes in climate using algal indicators in lake sediments. J Phycol 36:986–1011. doi:10.1046/j.1529-8817.2000.00049.x

    Article  Google Scholar 

  • Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A, Pienitz R, Rühland K, Sorvari S, Antoniades D, Brooks SJ, Fallu M, Hughes M, Keatley BE, Laing TE, Michelutti N, Nazarova L, Nyman M, Paterson AM, Perren B, Quinlan R, Rautio M, Saulnier-Talbot E, Siitonen S, Solovieva N, Weckstrom J (2005) Climate-driven regime shifts in the biological communities of arctic lakes. Proc Natl Acad Sci USA PNAS 102:4397–4402

    Article  Google Scholar 

  • Sorvari S, Korhola A, Thompson R (2002) Lake diatom response to recent Arctic warming in Finnish Lapland. Glob Chang Biol 8:171–181. doi:10.1046/j.1365-2486.2002.00463.x

    Article  Google Scholar 

  • ter Braak CJF, Smilauer P (2002) CANOCO Reference manual and CanoDraw for windows user’s guide: software for canonical community ordination (version 4.5)

  • Vadeboncoeur Y, Jeppesen E, Vander Zanden MJ, Schierup HH, Christoffersen K, Lodge DM (2003) From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnol Oceanogr 48:1408–1418

    Google Scholar 

  • Vincent WF, Laybourn-Parry J (2008) Polar lakes and rivers. Limnology of Arctic and Antarctic aquatic ecosystems. Oxford University Press, New York

    Google Scholar 

  • Vinebrooke RD, Leavitt PR (2005) Mountain lakes as indicators of the cumulative impacts of ultraviolet radiation and other environmental stressors. In: Huber UM, Bugmann KM, Reasoner MA (eds) Global change and mountain regions—a state of knowledge overview. Springer, New York, pp 497–509

    Google Scholar 

  • Vinebrooke RD, Hall RI, Leavitt PR, Cumming BF (1998) Fossil pigments as indicators of phototrophic response to salinity and climatic change in lakes of western Canada. Can J Fish Aquat Sci 55:668–681. doi:10.1139/cjfas-55-3-668

    Article  Google Scholar 

  • Weyhenmeyer GA (2001) Warmer winters: are planktonic algal populations in Sweden’s largest lakes affected? Ambio 30:565–571. doi:10.1639/0044-7447(2001)030[0565:WWAPAP]2.0.CO;2

    Google Scholar 

  • Wolfe BB, Edwards TWD, Aravena R (1999) Changes in carbon and nitrogen cycling during tree-line retreat recorded in the isotopic content of lacustrine organic matter, western Taimyr Peninsula, Russia. Holocene 9:215–222. doi:10.1191/095968399669823431

    Article  Google Scholar 

  • Wright SW, Jeffrey SW, Mantoura RFC, Llewellyn CA, Bjørnland T, Repeta D, Welschmeyer N (1991) Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar Ecol Prog Ser 77:183–196. doi:10.3354/meps077183

    Article  Google Scholar 

  • Zar JH (1996) Biostatistical analysis, 3rd edn. Prentice-Hall, Inc., UpperSaddle River

    Google Scholar 

Download references

Acknowledgments

Funds were provided by The Danish Research Council, The Swedish Research Council, The Royal Physiographic Society in Lund (grants to N. Reuss), The Crafoord Foundation, The Swedish Research Council (grants to R. Hall and D. Hammarlund), The Climate Impacts Research Centre (CIRC, funds to R. Hall and C. Bigler), NSERC Discovery grants (Canada, grants to R. Hall and P. Leavitt) and The Canada Research Chair program (grant to P. Leavitt). We thank A. Jonsson and J. Karlsson for providing pH and DOC data from their 16-lake set. K. Ericsson, E. Grahn, A. Jonsson, J. Karlsson, L. Janeck, P. Rosén, K. Sjödin, T. Westin and M. Rundgren assisted with lake sampling and lab support while M. Graham assisted on measuring LOI and M. Strömgren created Fig. 1. Two anonymous reviewers provided good and constructive suggestions for the final version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Reuss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reuss, N., Leavitt, P.R., Hall, R.I. et al. Development and application of sedimentary pigments for assessing effects of climatic and environmental changes on subarctic lakes in northern Sweden. J Paleolimnol 43, 149–169 (2010). https://doi.org/10.1007/s10933-009-9323-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-009-9323-x

Keywords

Navigation