Skip to main content
Log in

Seasonality of phytoplankton in northern tundra ponds

  • High Northern Latitudes
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Thermokarst ponds are the most abundant type of water body in the arctic tundra, with millions occurring in the coastal plains of Alaska, Northwest Territories and Siberia. Because ice covers of at least 2 m in thickness are formed at these latitudes, tundra ponds freeze solid every winter As a result, the growing season is shortened to a range of 60 to 100 days, during which time the photoperiod is altered to a prolonged light phase. Tundra ponds are generally close to neutral in pH and low in ions, contain dissolved gases near saturation and are nutrient poor. In low arctic ponds there are two phytoplankton biomass and primary production peaks, whereas they may be only one in the high arctic. Nanoplanktonic flagellates of the Chrysophyceae and Cryptophyceae dominate the maxima. The mid-summer decline in phytoplankton in the low arctic can be attributed to a combination of phosphorus limitation and heavy grazing pressure. The cryptomonad Rhodomonas minuta Skuja is one of the most widespread phytoplankters in tundra ponds. Because of the altered photoperiods, many species do not form resting spores prior to ice formation but survive freezing in the vegetative state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, V., D. W. Stanley, R. J. Daley & C. P. McRoy, 1980. Primary producers. In J. E. Hobbie (ed.), Limnology of tundra ponds, Barrow, Alaska. U.S./I.B.P. Synth. Ser. 13. Dowden, Hutchinson & Ross. Stroudsburg, Penn.: 179–250.

    Google Scholar 

  • Britton, M. E., 1957. Vegetation of the arctic tundra. In H. P. Hansen (ed.), Arctic biology. Oregon State Press, Corvallis, Oregon: 26–61.

    Google Scholar 

  • Brown, J., P. C. Miller L. L. Tieszen & F. L. Bunnell (eds), 1980. An arctic ecosystem. The coastal tundra at Barrow, Alaska. U.S./I.B.P. Synth. Ser. 12. Dowden, Hutchinson & Ross, Stroudsburg, Penn.: 571 pp.

    Google Scholar 

  • Carson, C. E. & K. M. Hussey, 1960. Hydrodynamics of three arctic lakes. J. Geol. 68: 585–600.

    Google Scholar 

  • Dodson, S. I., 1979. Body size patterns in arctic and temperate zooplankton. Limnol. Oceanogr. 24: 940–949.

    Google Scholar 

  • Douglas, L. A. & A. Bilgin, 1975. Nutrient regimes of soils, landscapes, lakes, and streams, Prudhoe Bay, Alaska. In J. Brown (ed.), Ecological Investigations of the Tundra Biome in the Prudhoe Bay region, Alaska. Univ. Alaska spec. Rep. 2, Fairbanks: 61–70.

  • Hobbie, J. E., 1973. Arctic limnology: A review. In M. E. Britton (ed.), Alaska arctic tundra. Arc. Inst. N. Am. tech. Pap. 25: 127–168.

  • Hobbie, J. E., 1980. Major findings. In J. E. Hobbie (ed.), Limnology of tundra ponds, Barrow, Alaska. U.S./I.B.P. Synth. Ser. 13. Dowden, Hutchinson & Ross, Stroudsburg, Penn.: 1–18.

    Google Scholar 

  • Holmgren, S., 1968. Phytoplankton production in a lake north of the Arctic Circle, Fil. Lic. Thesis, Univ. Uppsala, 145 pp.

  • Hutchinson, G. E., 1957. A treatise on limnology. Vol. 1 Geography, physics, and chemistry. Wiley-Interscience, N.Y., 1015 pp.

    Google Scholar 

  • Kalff, J., 1967. Phytoplankton abundance and primary production rates in two arctic ponds. Ecology 48: 558–565.

    Google Scholar 

  • Kalff, J., 1969. A diel periodicity in the optimum light intensity for maximum photosynthesis in natural phytoplankton populations. J. Fish. Res. Bd Can. 26: 463–468.

    Google Scholar 

  • Kalff, J., 1971. Nutrient limiting factors in an arctic tundra pond. Ecology 52: 655–659.

    Google Scholar 

  • Legett, R. F., H. B. Dickens & R. J. E. Brown, 1961. Permafrost investigations in Canada. In G. O. Raasch (ed.), Geology in the arctic. University of Toronto Press, Toronto, Ont.: 956–969.

    Google Scholar 

  • Levitt, J., 1980. Response of plants to environmental stresses. Vol. 1. Chilling, freezing, and high temperature stresses. Academic Press, N.Y., 497 pp.

    Google Scholar 

  • Livingstone, D. A., 1963. Alaska, Yukon, Northwest Territories, and Greenland. In D. G. Frey (ed.), Limnology in North America. University of Wisconsin Press, Madison: 559–574.

    Google Scholar 

  • Lowe, C. W., 1923. Report of the Canadian arctic expedition 1913–1918, 4. Botany, A. Freshwater algae and freshwater diatoms. King's Printer, Ottawa, Ontario, 53 pp.

    Google Scholar 

  • MacKay, J. R., 1963. The Mackenzie Delta area, N. W. T. Geographical Branch Memoir 8, Ottawa, 202 pp.

  • McCoy, G. A., 1983. Nutrient limitation in two arctic lakes, Alaska. Can. J. Fish. aquat. Sci. 40: 1195–1202.

    Google Scholar 

  • Miller, M. C., R. T. Prentki & R. J. Barsdate, 1980. Physics. In J. E. Hobbie (ed.). Limnology of tundra ponds, Barrow, Alaska. U.S./I.B.P. Synth. Ser. 13. Dowden, Hutchinson & Ross, Stroudsburg, Penn.: 51–75.

    Google Scholar 

  • Moore, J. W., 1974. Benthic algae of Southern Baffin Island. II. The epipelic communities in temporary ponds. J. Ecol. 62: 809–819.

    Google Scholar 

  • Moore, J. W., 1978. Distribution and abundance of phytoplankton in 153 lakes, rivers, and pools in the Northwest Territories. Can. J. Bot. 56: 1765–1773.

    Google Scholar 

  • Moore, J. W., 1981. Patterns of distribution of phytoplankton in Northern Canada. Nova Hedwigia 34: 599–621.

    Google Scholar 

  • Ohmura, A., 1982. Evaporation from the surface of the arctic tundra on Axel Heiburg Island. Wat. Resour. Res. 18: 291–300.

    Google Scholar 

  • Prentki, R. T., M. C. Miller, R. J. Barsdate, V. Alexander, J. Kelley & P. Coyne, 1980. Chemistry. In J. E. Hobbe (ed.), Limnology on tundra ponds, Barrow, Alaska. U.S./I.B.P. Synth. Ser. 13. Dowden, Hutchinson & Ross, Stroudsburg Penn.: 76–178.

    Google Scholar 

  • Prescott, G. W., 1963. Ecology of Alaskan freshwater algae, 2. Introduction: general considerations. Trans. am. microsc. Soc. 82: 83–142.

    Google Scholar 

  • Pruitt, W. O., Jr., 1978. Boreal ecology. Studies in Biology 91. Arnold, Lond., 73 pp.

    Google Scholar 

  • Rawson, D. S., 1953. Limnology in the North American arctic and subarctic. Arctic 6: 198–204.

    Google Scholar 

  • Rodin, L. E., N. I. Bazilevich & N.N. Rozov, 1975. Productivity of the world's main ecosystems. In: Productivity of world ecosystems. Proc. Symp., Aug. 31-Sept. 1, 1972, Seattle, Wash. Natn. Acad. Sci., Wash.: 13–26.

    Google Scholar 

  • Sheath, R. G., M. Munawar & J. A. Hellebust, 1975. Phytoplankton biomass composition and primary productivity during the ice-free period in a tundra pond. In Proc. Circumpolar Conf. arct. Ecol., Natn. Res. Counc., Ottawa, 3: 21–31.

  • Sheath, R. G. & J. A. Hellebust, 1978. Comparison of algae in the euplankton, tychoplankton, and periphyton of a tundra pond. Can. J. Bot. 56: 1472–1483.

    Google Scholar 

  • Sheath, R. G., M. Havas, J. A. Hellebust & T. C. Hutchinson, 1982. Effects of long-term natural acidification on the algal communities of tundra ponds at the Smoking Hills, N. W. T., Canada. Can. J. Bot. 60: 58–72.

    Google Scholar 

  • Sheath, R. G. & A. D. Steinman, 1982. A checklist of freshwater algae of the Northwest Territories, Canada. Can. J. Bot. 60: 1964–1997.

    Google Scholar 

  • Stanley, D. W., 1976. Productivity of epipelic algae in tundra ponds and a lake near Barrow, Alaska. Ecology 57: 1015–1024.

    Google Scholar 

  • Stanley, D. W. & R. J. Daley, 1976. Environmental control of primary productivity in Alaskan tundra ponds. Ecology 57: 1024–1033.

    Google Scholar 

  • Steponkus, P. L., 1984. Role of the plasma membrane in freezing injury and cold acclimation. Ann. Rev. Pl. Physiol. 35: 543–584.

    Google Scholar 

  • Stross, R. G., M. C. Miller & R. J. Daley, 1980. Zooplankton. In J. E. Hobbie (ed.), Limnology of tundra ponds, Barrow, Alaska. U.S./I.B.P. Synth. Ser. 13. Dowden, Hutchinson & Ross, Stroudsburg, Penn.: 251–296.

    Google Scholar 

  • Yamagishi, T., 1967. Some filamentous Chlorophyceae in the Alaskan arctic. Bull. Natn. Sci. Mus., Tokyo 10: 201–206.

    Google Scholar 

  • Yamagishi, T., 1969. Unicellular and colonial Chlorophyceae in the Alaskan arctic. Gen. Educ. Rev. Coll. Agr. Vet. Med., Nihon Univ. 5: 18–29.

    Google Scholar 

  • Yamagishi, T., 1970. A check-list of the Euglenophyceae and Chrysophyceae in the Alaskan arctic. Gen. Educ. Rev. Coll. Agr. Vet. Med., Nihon Univ. 6: 11–22.

    Google Scholar 

  • Yancey, P. H., M. E. Clark, S. C. Hand, R. D. Bowlus & G. N. Somero, 1982. Living with water stress: Evolution of osmolyte systems. Science 217: 1214–2222.

    Google Scholar 

  • Wetzel, R. G., 1983. Limnology, 2nd Edn. Saunders College Publishing, Philadelphia, Penn., 753 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheath, R.G. Seasonality of phytoplankton in northern tundra ponds. Hydrobiologia 138, 75–83 (1986). https://doi.org/10.1007/BF00027233

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00027233

Keywords

Navigation