Skip to main content
Log in

Cloning, Expression, and Characterization of Siamese Crocodile (Crocodylus siamensis) Hemoglobin from Escherichia coli and Pichia pastoris

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Recombinant Crocodylus siamensis hemoglobin (cHb) has been constructed and expressed using Escherichia coli as the expression system in conjunction with a trigger factor from the Cold-shock system as the fusion protein. While successful processing as soluble protein in E. coli was achieved, the net yields of active protein from downstream purification processes remained still unsatisfactory. In this study, cHb was constructed and expressed in the eukaryotic expression system Pichia pastoris. The results showed that cHb was excreted from P. pastoris as a soluble protein after 72 h at 25 °C. The amino acid sequence of recombinant cHb was confirmed using LC–MS/MS. Indeed, the characteristic of Hb was investigated by external heme incorporation. The UV–Vis profile showed a specific pattern of the absorption at 415 nm, indicating the recombinant cHb was formed complex with heme, resulting in active oxyhemoglobin (OxyHb). This result suggests that the heme molecules were fully combined with heme binding site of the recombinant cHb, thus producing characteristic red color for the OxyHb at 540 and 580 nm. The results revealed that the recombinant cHb was prosperously produced in P. pastoris and exhibited a property as protein–ligand binding. Thus, our work described herein offers a great potential to be applied for further studies of heme-containing protein expression. It represents further pleasing option for protein production and purification on a large scale, which is important for determination and characterization of the authenticity features of cHb proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AOX1:

Alcohol oxidase 1 promoter

cHb:

Crocodylus siamensis hemoglobin

Hb:

Hemoglobin

IBs:

Inclusion body

IMAC:

Immobilized metal affinity chromatography

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

LB:

Luria–Bertani medium

ORF:

Open reading frame

OxyHb:

Oxyhemoglobin

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

References

  1. Anderson AB, Robertson CR (1995) Absorption spectra indicate conformational alteration of myoglobin adsorbed on polydimethylsiloxane. Biophys J 68:2091–2097

    Article  CAS  Google Scholar 

  2. Bobofchak KM, Mito T, Texel SJ, Bellelli A, Nemoto M, Traystman RJ, Koehler RC, Brinigar WS, Fronticelli C (2003) A recombinant polymeric hemoglobin with conformational, functional, and physiological characteristics of an in vivo O2 transporter. Am J Physiol Heart Circ Physiol 285(2):549–561

    Article  Google Scholar 

  3. Cociancich S, Goyffon M, Bontems F, Bulet P, Bouet F, Menez A, Hoffmann JA (1993) Purification and characterization of a Scorpion defensin, a 4 kDa antibacterial peptide presenting structural similarities with insect defensins and Scorpion toxins. Biochem Biophys Res Commun 194(1):17–22

    Article  CAS  Google Scholar 

  4. Fogaca AC, da Silva PJ, Miranda MT, Bianchi AG, Miranda A, Ribolla PE, Daffre S (1999) Antimicrobial activity of a bovine hemoglobin fragment in the Tick Boophilus microplus. J Biol Chem 274(36):25330–25334

    Article  CAS  Google Scholar 

  5. Nedjar-Arroume N, Dubois-Delval V, Adje EY, Traisnel J, Krier F, Mary P, Kouach M, Briand G, Guillochon D (2008) Bovine hemoglobin: an attractive source of antibacterial peptide. Peptides 29:969–977

    Article  CAS  Google Scholar 

  6. Mak P, Wicherek L, Suder P, Dubin A, Banas T, Kaim I, Klimek M (2006) Analysis of free hemoglobin level and hemoglobin peptides from human puerperal uterine secretions. J Soc Gynecol Investig 13(3):285–291

    Article  CAS  Google Scholar 

  7. Deng L, Pan X, Wang Y, Wang L, Zhou XE, Li M, Feng Y, Wu Q, Wang B, Huang N (2009) Hemoglobin and its derived peptides may play a role in the antibacterial mechanism of the vagina. Hum Reprod 24:211–218

    Article  CAS  Google Scholar 

  8. Hoffman B, Key B, Ofer B, Kiryat T (2002) Reptilian-derived peptides for the treatment of microbial infections. In (United States) US 6,340,667

  9. Jandaruang J, Siritapetawee J, Thumanu K, Songsiriritthigul C, Krittanai C, Daduang S, Dhiravisit A, Thammasirirak S (2012) The Effects of temperature and pH on secondary structure and antioxidant activity of Crocodylus siamensis hemoglobin. Protein J 31:43–50

    Article  CAS  Google Scholar 

  10. Srihongthong S, Pakdeesuwan A, Daduang S, Araki T, Dhiravisit A, Thammasirirak S (2012) Complete amino acid sequence of globin chains and biological activity of fragmented crocodile hemoglobin (Crocodylus siamensis). Protein J 31:466–476

    Article  CAS  Google Scholar 

  11. Phosri S, Mahakunakorn P, Lueangsakulthai J, Jangpromma N, Swatsitang P, Daduang S, Dhiravisit A, Thammasirirak S (2014) An investigation of antioxidant and anti-inflammatory activities from blood components of Crocodile (Crocodylus siamensis). Protein J 33:484–492

    Article  CAS  Google Scholar 

  12. Anwised P, Kabbua T, Temsiripong T, Dhiravisit A, Jitrapakdee S, Araki T, Yoneda K, Thammasirirak S (2013) Molecular cloning and expression of α-globin and β-globin genes from crocodile (Crocodylus siamensis). Protein J 32(3):172–182

    Article  CAS  Google Scholar 

  13. Jandaruang J, Siritapetawee J, Songsiriritthigul C, Preecharram S, Azuma T, Dhiravisit A, Fukumori Y, Thammasirirak S (2014) Purification, characterization, and crystallization of Crocodylus siamensis hemoglobin. Protein J 33:377–385

    Article  CAS  Google Scholar 

  14. Cregg JM, Higgins DR (1995) Production of foreign proteins in the yeast Pichia pastoris. Can J Bot 73:891–897

    Article  Google Scholar 

  15. Tschopp JE, Brust PE, Cregg JM, Stillman CA, Gingeras GR (1987) Expression of the LacZ gene from two methanol-regulated promoters in Pichia pastoris. Nucleic Acids Res 15:3859–3876

    Article  CAS  Google Scholar 

  16. Barr KA, Hopkins SA, Sreekrishna K (1992) Protocol for efficient secretion of HSA developed from Pichia pastoris. Pharm Eng 12:48–51

    Google Scholar 

  17. Almeida MS, Cabral KS, Medeiros L, Valente FCL, Almeida FCL, Kurtenbach E (2001) cDNA cloning and heterologous expression of functional cysteine-rich antifugal protein Psd 1 in the yeast Pichia pastoris. Arch Biochem Biophys 395:199–207

    Article  CAS  Google Scholar 

  18. Cabral KMS, Almeida MS, Valente AP, Almeida FCL, Kurtenbach E (2003) Production of the active antifugual Pisum sativum defensin 1(Psd1) in Pichia pastoris: overcoming the inefficiency of the STE13 protease. Protein Expr Purif 31:115–122

    Article  CAS  Google Scholar 

  19. Chen JJ, Chen GH, Hsu HC, Li SS, Chen CS (2004) Cloning and functional expression of a mungbean defensin VrD1 in Pichia pastoris. J Agric Food Chem 52:2256–2261

    Article  CAS  Google Scholar 

  20. Li L, Wang JX, Zhao XF, Kang CJ, Liu N, Xiang JH, Li FH, Sueda FHS, Kondo H (2005) High level expression, purification, and characterization of the shrimp antimicrobial peptide, Ch-penaeidin, in Pichia pastoris. Protein Expr Purif 39:144–151

    Article  CAS  Google Scholar 

  21. Birnboim HC, Doly J (1979) A rapid alkaline extraction prodedure for screening recombinant plasmid DNA. Nucleic Acids Res 7(6):1513–1523

    Article  CAS  Google Scholar 

  22. Alam SL, Dutton DP, Satterlee JD (1994) Expression of recombinant monomer hemoglobins (Component IV) from the marine annelied Glycera dibranchiata: evidence for primary sequence positional regulation of heme rotational disorder. Biochemistry 33:10337–10344

    Article  CAS  Google Scholar 

  23. Oinuma KI, Hashimoto Y, Konishi K, Goda M, Noguchi T, Higashibata H, Kobayashi K (2003) Novel aldoxime dehydratase involved in carbon-nitrogen triple bond synthesis of Pseudomonas chlororaphis B23. J Biol Chem 278(32):29600–29608

    Article  CAS  Google Scholar 

  24. Siegel LM, Murphy MJ, Kamin H (1973) Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. I. The Escherichia coli hemoflavoprotein: molecular parameters and prosthetic groups. J Biol Chem 248(1):251–264

    CAS  Google Scholar 

  25. Metzger SU, Cramer WA, Whitmarsh J (1997) Critical analysis of the extinction coefficient of chloroplast cytochrome f. Biochim Biophys Acta 1319:233–241

    Article  CAS  Google Scholar 

  26. Berry EA, Trumpower BL (1987) Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra. Anal Biochem 161(1):1–15

    Article  CAS  Google Scholar 

  27. Kabbua T, Anwised P, Boonmee A, Subedi BP, Pierce BS, Thammasirirak S (2014) Autoinduction, purification, and characterization of soluble α-globin chains of crocodile (Crocodylus siamensis) hemoglobin in Escherichia coli. Protein Expr Purif 103:56–63

    Article  CAS  Google Scholar 

  28. Vallejo LF, Rinas U (2004) Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microb Cell Fact. doi:10.1186/1475-2859-3-11

    Google Scholar 

  29. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  CAS  Google Scholar 

  30. Khow O, Suntrarachun S (2012) Strategies for production of active eukaryotic proteins in bacterial expression system. Asian Pac J Trop Biomed 2:159–162

    Article  CAS  Google Scholar 

  31. Ohi H, Miura M, Hiramatsu R, Ohmura T (1994) The positive and negative cis-acting elements for methanol regulation in the Pichia pastoris AOX2 gene. Mol Genet Genomics 243:489–499

    Article  CAS  Google Scholar 

  32. Romanos MA (1995) Advances in the use of Pichia pastoris for high-level gene expression. Curr Opin Biotechnol 6:527–533

    Article  CAS  Google Scholar 

  33. Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22:346–353

    Article  CAS  Google Scholar 

  34. Wang H, Wang Q, Zhang F, Huang Y, Ji Y, Hou Y (2008) Protein expression and purification of human Zbtb7A in Pichia pastoris via gene codon optimization and synthesis. Protein Expr Purif 60:97–102

    Article  CAS  Google Scholar 

  35. Gao Z, Li Z, Zhang Y, Huang H, Li M, Zhou L, Tang Y, Yao B, Zhang W (2012) High-level expression of the Penicillium notatum glucose oxidase gene in Pichia pastoris using codon optimization. Biotechnol Lett 34:507–514

    Article  CAS  Google Scholar 

  36. Yu P, Yan Y, Gu Q, Wang X (2013) Codon optimisation improves the expression of Trichoderma viride sp. endochitinase in Pichia pastoris. Sci Rep. doi:10.1038/srep03043

    Google Scholar 

  37. Maijaroen S, Anwised P, Klaynongsruang S, Daduang S, Boonmee A (2016) Comparison of recombinant & #x03B1;-hemoglobin from Crocodylus siamensis expressed in different cloning vectors and their biological properties. Protein Expr Purif 118:55–63

    Article  CAS  Google Scholar 

  38. Narhi LO, Fulco AJ (1986) Characterization of a Catalytically Self-sufficient 119,000-Dalton Cytochrome P-450 Monooxygenase Induced by Barbiturates in Bacillus megaterium. J Biol Chem 261:7160–7169

    CAS  Google Scholar 

  39. Kato Y, Nakamura K, Sakiyama H, Mayhew SG, Asano Y (2000) Novel heme-containing lyase, phenylacetaldoxime dehydratase from Bacillus sp. strain OxB-1: purification, characterization, and molecular cloning of the gene. Biochemistry 39(4):800–809

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, Khon Kaen University, Thailand (Grant no. NRU571004), the Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI) funded by Khon Kean University. The authors thank the Sriracha Moda Co. Ltd., Chon Buri, Thailand for providing crocodile blood samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sompong Klaynongsruang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anwised, P., Jangpromma, N., Temsiripong, T. et al. Cloning, Expression, and Characterization of Siamese Crocodile (Crocodylus siamensis) Hemoglobin from Escherichia coli and Pichia pastoris . Protein J 35, 256–268 (2016). https://doi.org/10.1007/s10930-016-9669-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-016-9669-7

Keywords

Navigation