Skip to main content

Advertisement

Log in

Purification of a NAD(P) Reductase-Like Protein from the Thermogenic Appendix of the Sauromatum guttatum Inflorescence

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

A NAD(P) reductase-like protein with a molecular mass of 34.146 ± 34 Da was purified to homogeneity from the appendix of the inflorescence of the Sauromatum guttatum. On-line liquid chromatography/electrospray ionization-mass spectrometry was used to isolate and quantify the protein. For the identification of the protein, liquid chromatography/electrospray ionization-tandem mass spectrometry analysis of tryptic digests of the protein was carried out. The acquired mass spectra were used for database searching, which led to the identification of a single tryptic peptide. The 12 amino acid tryptic peptide (FLPSEFGNDVDR) was found to be identical to amino acid residues at the positions 108–120 of isoflavone reductase in the Arabidopsis genome. A BLAST search identified this sequence region as unique and specific to a class of NAD(P)-dependent reductases involved in phenylpropanoid biosynthesis. Edman degradation revealed that the protein was N-terminally blocked. The amount of the protein (termed RL, NAD(P) reductase-like protein) increased 60-fold from D-4 (4 days before inflorescence-opening, designated as D-day) to D-Day, and declined the following day, when heat-production ceased. When salicylic acid, the endogenous trigger of heat-production in the Sauromatum appendix, was applied to premature appendices, a fivefold decrease in the amount of RL was detected in the treated section relative to the non-treated section. About 40 % of RL was found in the cytoplasm. Another 30 % was detected in Percoll-purified mitochondria and the rest, about 30 % was associated with a low speed centrifugation pellet due to nuclei and amyloplast localization. RL was also found in other thermogenic plants and detected in Arabidopsis leaves. The function of RL in thermogenic and non-thermogenic plants requires further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

D-Day:

The day of inflorescence opening and heat-production

IP:

Isopropanol

ESI:

Electrospray ionization

LC:

Liquid chromatography

MaxEnt:

Maximum entropy software for deconvolution of multiply charged electrospray envelopes

MS:

Mass spectrometry

NIPIA:

N-isopropyl iodoacetamide

OBs:

Oil bodies

ODs:

Osmiophilic deposits

PVP:

Polyvinylpyrrolidone

RL:

NAD(P) reductase-like protein

RP-HPLC:

Reversed-phase high-performance liquid chromatography

RuBisCO:

Ribulose-1,5-bisphosphate carboxylase oxygenase

SA:

Salicylic acid

SDS-PAGE:

SDS-polyacrylamide gel electrophoresis

TIC:

Total ion current

TFA:

Trifluoroacetic acid

TPCK:

L-1-tosylamido-2-phenylethyl chloromethyl ketone

References

  1. Akashi T, Koshimizu S, Aoki T, Ayabe S (2006) FEBS Lett 580:5666–5670

    Article  CAS  Google Scholar 

  2. Ayala G, Nascimento A, Gómez-Puyou A, Darszon A (1985) Biochem Biophys Acta 810:115–122

    Article  CAS  Google Scholar 

  3. Chertov O, Simpson JT, Biragyn A, Conrads TP, Veenstra TD, Fisher RJ (2005) Expert Rev Proteomics 2:139–145

    Article  CAS  Google Scholar 

  4. D’Andréa S, Jolivet P, Boulard C, Larré C, Froissard M, Chardot T (2007) J Agric Food Chem 55:10008–10015

    Article  Google Scholar 

  5. Darszon A, Gómez-Puyou A (1982) Eur J Biochem 12:427–433

    Article  Google Scholar 

  6. Dinova-Kostova AT, Gang DR, Davin LB, Bedgar DL, Chu A, Lewis NG (1996) J Biol Chem 271:29473–29482

    Article  Google Scholar 

  7. Dixon RA, Paiva NL (1995) Plant Cell 7:1085–1097

    CAS  Google Scholar 

  8. Elthon TE, McIntosh L (1986) Plant Physiol 82:1–6

    Article  CAS  Google Scholar 

  9. Fahn A (1979) Secretory tissues in plants. Academic Press, New York

    Google Scholar 

  10. Ferre JL, Austin MB, Stewart C, Noel JP (2008) Plant Physiol Biochem 46:356–370

    Article  Google Scholar 

  11. Gang DR, Kasahara H, Xia Z-Q, Mijnsbrugge KV, Bauw G, Boerjan W, Van Montagu M, Davin LB, Lewis NG (1999) J Biol Chem 274:7516–7527

    Article  CAS  Google Scholar 

  12. Higdon R, Kolker E (2007) Bioinformatics 23:277–280

    Article  CAS  Google Scholar 

  13. Horn PJ, Ledbetter NR, James CN, Hoffman WD, Case CR, Verbeck GF, Chapman KD (2010) J Biol Chem 286:3298–3306

    Article  Google Scholar 

  14. Koeduka T, Fridman E, Gang DR, Vassão DG, Jackson BL, Kish CM, Oova I, Spassova SM, Lewis NG, Noel JP, Baiga TJ, Dudareva N, Pichersky E (2006) Proc Nat Acad Sci USA 26:10128–10133

    Article  Google Scholar 

  15. Lamb HK, Leslie K, Dodds AL, Nutley M, Cooper A, Johnson C, Thompson P, Stammers DK, Hawkins AR (2003) J Biol Chem 278:32107–32114

    Article  CAS  Google Scholar 

  16. Lamb HK, Stammers DK, Hawkins AR (2008) Sci Signal 133:pe38

    Article  Google Scholar 

  17. Laemmli UK (1970) Nature 227:680–685

    Article  CAS  Google Scholar 

  18. Link AJ, Eng J, Schieltz DM, Carmack E, Mize GM, Morris DR, Garvik BM, Yates JR (1999) Nature Biotech 17:676–682

    Article  CAS  Google Scholar 

  19. Meeuse BJD (1985) In: Palmer JM (ed) The physiology and biochemistry of plant respiration. Cambridge University Press, Cambridge, pp 47–58

    Google Scholar 

  20. Moore BD (2004) Plant Sci 9:221–228

    Article  CAS  Google Scholar 

  21. Murphy DJ, Vance J (1999) Trends Biochem Sci 24:109–115

    Article  CAS  Google Scholar 

  22. Nakatsudo T, Mizutani M, Suzuki S, Hattori T, Umezawa T (2008) J Biol Chem 283:15550–15557

    Article  Google Scholar 

  23. Núñez-Corcuera B, Serafimidis J, Arias-Palomo E, Rivera-Calzada A, Suarez T (2008) Dev Biol 321:331–342

    Article  Google Scholar 

  24. Polevoda B, Sherman F (2002) Genome Biol 3:REVIEWS0006

    Article  Google Scholar 

  25. Quail PH (1979) Ann Rev Plant Physiol 30:425–484

    Article  CAS  Google Scholar 

  26. Raskin I, Ehmann A, Melander WR, Meeuse BJD (1987) Science 237:1601–1602

    Article  CAS  Google Scholar 

  27. Shiojiri H, Kishimoto K, Ozawa R, Kugimiya S, Urashimo S, Arimura G, Horiuchi J, Nishioka T, Matsui K, Takabayashi J (2006) Proc Nat Acad Sci USA 103:16672–16676

    Article  CAS  Google Scholar 

  28. Siloto RM, Findlay K, Lopez-Villaobos A, Yeung EC, Nykiforuk CL, Moloney MM (2006) Plant Cell 18:1961–1974

    Article  CAS  Google Scholar 

  29. Skubatz H, Meeuse BJD, Bendich AJ (1989) Plant Physiol 91:530–535

    Article  CAS  Google Scholar 

  30. Skubatz H, Nelson TA, Meeuse BJD, Bendich AJ (1991) Plant Physiol 95:1084–1088

    Article  CAS  Google Scholar 

  31. Skubatz H, Kunkel DD, Meeuse BJD (1993) Sex Plant Reprod 6:153–170

    Google Scholar 

  32. Skubatz H, Kunkel DD, Patt J, Howald WN, Rothman T, Meeuse BJD (1995) Proc Nat Acad Sci USA 92:10084–10088

    Article  CAS  Google Scholar 

  33. Skubatz H, Kunkel DD, Howald WN, Trenkle R, Mookherjee B (1996) New Phytol 134:631–640

    Article  CAS  Google Scholar 

  34. Skubatz H, Orellana MV, Yablonka-Reuveni Z (2000) Histochem J 32:467–474

    Article  CAS  Google Scholar 

  35. Tang W (1987) Bot Gazette 148:165–174

    Article  Google Scholar 

  36. Tikunov YM, de Vos RCH, González Paramás AM, Hall RD, Bovy AG (2010) Plant Physiol 152:55–70

    Article  CAS  Google Scholar 

  37. Uritani I, Asahi T (1980) The biochemistry of plants, vol 2. Academic Press, New York, pp 463–483

    Google Scholar 

  38. Vander Mijnsbrugge K, Beeckman H, De Rycke R, Van Montagu M, Engler G (2000) Planta 211:502–509

    Article  CAS  Google Scholar 

  39. Vogel S (1989) In: Renner S (ed) The role of scent glands in pollination. Amerind, New Delhi

    Google Scholar 

  40. Wang J, Dudareva N, Bhakta S, Raguso RA, Pichersky E (1997) Plant Physiol 114:213–221

    Article  CAS  Google Scholar 

  41. Wang X, He X, Lin J, Shao H, Chang Z, Dixon RA (2006) J Mol Biol 358:1341–1352

    Article  CAS  Google Scholar 

  42. Waridel P, Frank A, Thomass H, Surendranath V, Sunyaev S, Pevzner P, Schevchenko A (2007) Proteomics 7:2318–2329

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the University of Washington, Department of Medicinal Chemistry, Mass Spectrometry Center for their assistance in the isolation, purification and quantification of RL; and the Harvard Medical School, Department of Genetics, Biopolymers Facility for their assistance in the identification of the tryptic peptide; and the Biomolecular Research Facility at the University of Virginia for their Edman degradation analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Skubatz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skubatz, H., Howald, W.N. Purification of a NAD(P) Reductase-Like Protein from the Thermogenic Appendix of the Sauromatum guttatum Inflorescence. Protein J 32, 197–207 (2013). https://doi.org/10.1007/s10930-013-9472-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-013-9472-7

Keywords

Navigation