Skip to main content
Log in

Quantitation of pH-induced Aggregation in Binary Protein Mixtures by Dielectric Spectroscopy

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

This paper presents a quantitative approach for measuring pH-controlled protein aggregation using dielectric spectroscopy. The technique is demonstrated through two aggregation experiments, the first between β-lactoglobulin (β-Lg) and hen lysozyme (HENL) and the second between bovine serum albumin (BSA) and HENL. In both experiments, the formation of aggregates is strongly dependent on the solution pH and is clearly indicated by a decrease in the measured permittivity when the second protein is added. A quantifiable lower-bound on the ratio of proteins involved in the aggregation process is obtained from the permittivity spectra. Lower-bound aggregation ratios of 83 % for β-Lg/HENL at pH 6.0 and 48 % for BSA/HENL at pH 9.2 were consistent with turbidity measurements made on the same solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

β-Lg:

Beta-lactoglobulin

BSA:

Bovine serum albumin

EP:

Electrode polarization

DI:

De-ionized

DS:

Dielectric spectroscopy

HENL:

Hen lysozyme

PDB:

Protein data bank

References

  1. Cametti C, Marchetti S, Gambi C, Onori G (2011) J Phys Chem B 115:7144–7153

    Article  CAS  Google Scholar 

  2. Chi EY, Krishnan S, Randolph TW, Carpenter JF (2003) Pharmaceut Res 20:1325–1336

    Article  CAS  Google Scholar 

  3. Choi I, Huh YS, Erickson D (2012) Microfluid Nanofluid (12):663–669

  4. Cole KS, Cole RH (1941) J Chem Phys (9):341–351

  5. Debye P (1929) Polar molecules. Chemical Catalog Company Inc, New York

    Google Scholar 

  6. Demeule B, Palais C, Machaidze G, Gurny R, Arvinte T (2009) Mabs 1:142–150

    Article  Google Scholar 

  7. Desfougeres Y, Croguennec T, Lechevalier V, Bouhallab S, Nau F (2010) J Phys Chem B 114:4138–4144

    Article  CAS  Google Scholar 

  8. Dong AC, Prestrelski SJ, Allison SD, Carpenter JF (1995) J Pharmaceut Sci 84:415–424

    Article  CAS  Google Scholar 

  9. Georgalis Y, Starikov EB, Hollenbach B, Lurz R, Scherzinger E, Saenger W, Lehrach H, Wanker EE (1993) Proc Nat Acad Sci USA 95:6118–6121

    Article  Google Scholar 

  10. Gordon JC, Myers JB, Folta T, Shoja V, Heath LS, Onufriev A (2005) Nucl Acids Res 33:W368–W371

    Article  CAS  Google Scholar 

  11. Grant EH, Sheppard RJ, South GP (1978) Dielectric behaviour of biological molecules in solution. Oxford University Press, Oxford

    Google Scholar 

  12. Helms LR, Wetzel R (1996) J Mol Biol 257:77–86

    Article  CAS  Google Scholar 

  13. Howell NK, Yeboah NA, Lewis DFV (1995) Int J Food Sci Technol 30:813–824

    Article  CAS  Google Scholar 

  14. Kaatze U, Feldman Y (2006) Meas Sci Tech 17:R17–R35

    Article  CAS  Google Scholar 

  15. Kendrick BS, Cleland JL, Lam X, Nguyen T, Randolph TW, Manning MC, Carpenter JF (1998) J Pharmaceut Sci 87:1069–1076

    Article  CAS  Google Scholar 

  16. Kerwin BA, Heller MC, Levin SH, Randolph TW (1998) J Pharmaceut Sci 87:1062–1068

    Article  CAS  Google Scholar 

  17. Knowles TPJ, Shu W, Huber F, Lang HP, Gerber C, Dobson CM, Welland ME (2008) Nanotech 19:384007

    Article  Google Scholar 

  18. Kuehner DE, Engmann J, Fergg F, Wernick M, Blanch HW, Prausnitz JM (1999) J Phys Chem B 103:1368–1374

    Article  CAS  Google Scholar 

  19. MacKenzie H (1971) Milk proteins: chemistry and molecular biology, vol 2. Academic Press, New York

    Google Scholar 

  20. Mahler H, Jiskoot W (2011) Analysis of aggregates and particles in protein pharmaceuticals. Wiley, Hoboken NJ

    Google Scholar 

  21. Mahler HC, Friess W, Grauschopf U, Kiese S (2009) J Pharmaceut Sci 98:2909–2934

    Article  CAS  Google Scholar 

  22. Majhi PR, Ganta RR, Vanam RP, Seyrek E, Giger K, Dubin PL (2006) Langmuir 22:9150–9159

    Article  CAS  Google Scholar 

  23. Malleo D, Nevill JT, van Ooyen A, Schnakenberg U, Lee LP, Morgan H (2010) Rev Sci Instrum 81:016104

    Article  CAS  Google Scholar 

  24. Mazzeo BA, Chandra S, Mellor BL, Arellano J (2010) Rev Sci Instrum 81:125103

    Article  Google Scholar 

  25. Mellor B, Kellis N, Mazzeo B (2011) In: 2011 annual international conference of the IEEE engineering in medicine and biology society, EMBC, Boston, MA, pp 3660–3663

  26. Mellor BL, Cruz Cortes E, Busath DD, Mazzeo BA (2011) J Phys Chem B 115:2205–2213

    Article  CAS  Google Scholar 

  27. Mellor BL, Cruz Cortes E, Khadka S, Mazzeo BA (2012) Rev Sci Instrum 83:015110

    Article  Google Scholar 

  28. Nigen M, Croguennec T, Renard D, Bouhallab S (2007) Biochem 46:1248–1255

    Article  CAS  Google Scholar 

  29. Oleinikova A, Sasisanker P, Weingartner H (2004) J Phys Chem B 108:8467–8474

    Article  CAS  Google Scholar 

  30. Parbhu A, Lin H, Thimm J, Lal R (2002) Peptides 23:1265–1270

    Article  CAS  Google Scholar 

  31. Peters T (1985) Adv Prot Chem 37:161–245

    Article  CAS  Google Scholar 

  32. Ringler P, Schulz GE (2003) Science 302:106–109

    Article  CAS  Google Scholar 

  33. Ross CA, Poirier MA (2004) Nature Med 10:S10–S17

    Article  Google Scholar 

  34. Suherman PM, Taylor PM, Smith G (2002) Pharmaceut Res 19:337–344

    Article  CAS  Google Scholar 

  35. Takashima S (1964) Biochim Biophys Acta Biophys Subj 79:531–538

    CAS  Google Scholar 

  36. Tartaglia GG, Cavalli A, Pellarin R, Caflisch A (2004) Prot Sci 13:1939–1941

    Article  CAS  Google Scholar 

  37. Tomski SJ, Murphy RM (1992) Arch Biochem Biophys 294:630–638

    Article  CAS  Google Scholar 

  38. van der Linden E, Venema P (2007) Curr Opin Colloid Interface Sci 12:158–165

    Article  CAS  Google Scholar 

  39. Wolf M, Gulich R, Lunkenheimer P, Loidl A (2012) Biochim Biophys Acta Proteins Proteomics 5:723–730

    Article  Google Scholar 

  40. Xie W, Wan OW, Chung KKK (2010) Biochim Biophys Acta Mol Basis Dis 1802:935–941

    Article  CAS  Google Scholar 

  41. Yong YH, Foegeding EA (2009) J Agric Food Chem 58:685–693

    Article  Google Scholar 

  42. Zhang SG (2003) Nat Biotech 21:1171–1178

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Shiul Khadka and Bryson Lanterman for initial construction of measurement cells and preliminary experiments. BLM was supported by a MIT Lincoln Laboratory Fellowship Award. This work was supported by funds from the BYU College of Engineering and Technology and the Office of Research & Creative Activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian A. Mazzeo.

Appendix Detailed Experimental Protocol

Appendix Detailed Experimental Protocol

1.1 β-Lg/HENL Experiment

  1. 1.

    Cell rinsed once with ethanol followed by three rinses with DI water and then dried in air. Air calibration measurement taken.

  2. 2.

    (A) Added 60 μl of DI water to cell. Water calibration measurement taken after stabilization.

  3. 3.

    (B) Removed 18 μl. Added 18 μl of 10 mg/ml β-Lg in DI water resulting in 3 mg/ml β-Lg in DI water.

  4. 4.

    (C) Added 6 μl of 10 mg/ml HENL in DI water resulting in 0.91 mg/ml HENL and 2.73 mg/ml β-Lg in DI water.

  5. 5.

    (D) Removed all liquid from cell by pipettor. Added 60 μl of 5 mM HCl. Cell recalibrated.

  6. 6.

    (E) Removed 36 μl. Added 18 μl of 10 mM HCl. Added 18 μl of 10 mg/ml β-Lg in DI water resulting in 3 mg/ml β-Lg in 5 mM HCl.

  7. 7.

    (F) Removed 6 μl. Added 6 μl of 10 mM HCl. Added 6 μl of 10 mg/ml HENL in DI water resulting in 0.91 mg/ml HENL and 2.45 mg/ml β-Lg in 5 mM HCl.

  8. 8.

    Cell rinsed with and immersed into DI water for storage.

1.2 BSA/HENL Experiment

  1. 1.

    Cell rinsed once with ethanol followed by three rinses with DI water and then dried in air. Air calibration measurement taken.

  2. 2.

    (G) Added 60 μl of DI water to cell. Water calibration measurement taken.

  3. 3.

    (H) Removed 18 μl. Added 18 μl of 10 mg/ml BSA in DI water resulting in 3 mg/ml BSA in DI water.

  4. 4.

    (I) Added 6 μl of 10 mg/ml HENL in DI water resulting in 0.91 mg/ml HENL and 2.73 mg/ml BSA in DI water.

  5. 5.

    (J) Removed all liquid from cell by pipettor. Added 60 μl of 1 mM NaOH.

  6. 6.

    (K) Removed 36 μl. Added 18 μl of 2 mM NaOH. Added 18 μl of 10 mg/ml BSA in DI water resulting in 3 mg/ml BSA in 1 mM NaOH.

  7. 7.

    (L) Removed 6 μl. Added 6 μl of 2 mM NaOH. Added 6 μl of 10 mg/ml HENL in DI water resulting in 0.91 mg/ml HENL and 2.45 mg/ml BSA in 1 mM NaOH.

  8. 8.

    Cell rinsed with and immersed into DI water for storage.

1.3 Additional Experimental Notes

  1. 1.

    The Agilent 4294A Impedance Analyzer had the following settings: measurement parameters \(\rightarrow\) Cp-G, sweep type \(\rightarrow\) log, sweep direction \(\rightarrow\) down, oscillator strength \(\rightarrow\) 500 mV, bandwidth \(\rightarrow\) 4, start frequency \(\rightarrow\) 40 Hz, stop frequency \(\rightarrow\) 110 MHz, number of points \(\rightarrow\) 601.

  2. 2.

    Each time liquid was added into the measurement cell, the entire solution was mixed by repeated actuation of the pipettor for about 10 s.

  3. 3.

    Permittivity measurements when adding proteins and mixing were unstable. These sweeps (1–2 per step) were discarded from Figs. 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mellor, B.L., Wood, S.J. & Mazzeo, B.A. Quantitation of pH-induced Aggregation in Binary Protein Mixtures by Dielectric Spectroscopy. Protein J 31, 703–709 (2012). https://doi.org/10.1007/s10930-012-9450-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-012-9450-5

Keywords

Navigation