Skip to main content

Advertisement

Log in

Computational pharmacokinetics/pharmacodynamics of rifampin in a mouse tuberculosis infection model

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

One critical approach to preclinical evaluation of anti-tuberculosis (anti-TB) drugs is the study of correlations between drug exposure and efficacy in animal TB infection models. While such pharmacokinetic/pharmacodynamic (PK/PD) studies are useful for the identification of optimal clinical dosing regimens, they are resource intensive and are not routinely performed. A mathematical model capable of simulating the PK/PD properties of drug therapy for experimental TB offers a way to mitigate some of the practical obstacles to determining the PK/PD index that best correlates with efficacy. Here, we present a preliminary physiologically based PK/PD model of rifampin therapy in a mouse TB infection model. The computational framework integrates whole-body rifampin PKs, cell population dynamics for the host immune response to Mycobacterium tuberculosis infection, drug-bacteria interactions, and a Bayesian method for parameter estimation. As an initial application, we calibrated the model to a set of available rifampin PK/PD data and simulated a separate dose fractionation experiment for bacterial killing kinetics in the lungs of TB-infected mice. The simulation results qualitatively agreed with the experimentally observed PK/PD correlations, including the identification of area under the concentration-time curve as best correlating with efficacy. This single-drug framework is aimed toward extension to multiple anti-TB drugs in order to facilitate development of optimal combination regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Laurenzi M, Ginsberg A, Spigelman M (2007) Challenges associated with current and future TB treatment. Infect Disord Drug Targets 7(2):105–119

    Article  CAS  PubMed  Google Scholar 

  2. Spigelman M, Woosley R, Gheuens J (2010) New initiative speeds tuberculosis drug development: novel drug regimens become possible in years, not decades. Int J Tuberc Lung Dis 14(6):663–664

    PubMed  Google Scholar 

  3. Nuermberger E, Tyagi S, Tasneen R, Williams KN, Almeida D, Rosenthal I, Grosset JH (2008) Powerful bactericidal and sterilizing activity of a regimen containing PA-824, moxifloxacin, and pyrazinamide in a murine model of tuberculosis. Antimicrob Agents Chemother 52(4):1522–1524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Tasneen R, Li SY, Peloquin CA, Taylor D, Williams KN, Andries K, Mdluli KE, Nuermberger EL (2011) Sterilizing activity of novel TMC207- and PA-824-containing regimens in a murine model of tuberculosis. Antimicrob Agents Chemother 55(12):5485–5492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Williams K, Minkowski A, Amoabeng O, Peloquin CA, Taylor D, Andries K, Wallis RS, Mdluli KE, Nuermberger EL (2012) Sterilizing activities of novel combinations lacking first- and second-line drugs in a murine model of tuberculosis. Antimicrob Agents Chemother 56(6):3114–3120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Diacon AH, Dawson R, von Groote-Bidlingmaier F, Symons G, Venter A, Donald PR, van Niekerk C, Everitt D, Winter H, Becker P, Mendel CM, Spigelman MK (2012) 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial. Lancet 380(9846):986–993

    Article  CAS  PubMed  Google Scholar 

  7. Mouton JW, Ambrose PG, Canton R, Drusano GL, Harbarth S, MacGowan A, Theuretzbacher U, Turnidge J (2011) Conserving antibiotics for the future: new ways to use old and new drugs from a pharmacokinetic and pharmacodynamic perspective. Drug Resist Updat 14(2):107–117

    Article  CAS  PubMed  Google Scholar 

  8. Chang KC, Leung CC, Grosset J, Yew WW (2011) Treatment of tuberculosis and optimal dosing schedules. Thorax 66(11):997–1007

    Article  PubMed  Google Scholar 

  9. De Groote MA, Gruppo V, Woolhiser LK, Orme IM, Gilliland JC, Lenaerts AJ (2012) Importance of confirming data on the in vivo efficacy of novel antibacterial drug regimens against various strains of Mycobacterium tuberculosis. Antimicrob Agents Chemother 56(2):731–738

    Article  PubMed Central  PubMed  Google Scholar 

  10. Grosset J, Almeida D, Converse PJ, Tyagi S, Li SY, Ammerman NC, Pym AS, Wallengren K, Hafner R, Lalloo U, Swindells S, Bishai WR (2012) Modeling early bactericidal activity in murine tuberculosis provides insights into the activity of isoniazid and pyrazinamide. Proc Natl Acad Sci USA 109(37):15,001–15,005

    Article  CAS  Google Scholar 

  11. Ginsberg A (2011) The TB Alliance: overcoming challenges to chart the future course of TB drug development. Future Med Chem 3(10):1247–1252

    Article  CAS  PubMed  Google Scholar 

  12. Jayaram R, Gaonkar S, Kaur P, Suresh BL, Mahesh BN, Jayashree R, Nandi V, Bharat S, Shandil RK, Kantharaj E, Balasubramanian V (2003) Pharmacokinetics-pharmacodynamics of rifampin in an aerosol infection model of tuberculosis. Antimicrob Agents Chemother 47(7):2118–2124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Jayaram R, Shandil RK, Gaonkar S, Kaur P, Suresh BL, Mahesh BN, Jayashree R, Nandi V, Bharath S, Kantharaj E, Balasubramanian V (2004) Isoniazid pharmacokinetics-pharmacodynamics in an aerosol infection model of tuberculosis. Antimicrob Agents Chemother 48(8):2951–2957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Shandil RK, Jayaram R, Kaur P, Gaonkar S, Suresh BL, Mahesh BN, Jayashree R, Nandi V, Bharath S, Balasubramanian V (2007) Moxifloxacin, ofloxacin, sparfloxacin, and ciprofloxacin against Mycobacterium tuberculosis: evaluation of in vitro and pharmacodynamic indices that best predict in vivo efficacy. Antimicrob Agents Chemother 51(2):576–582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Pasipanodya J, Gumbo T (2011) An oracle: antituberculosis pharmacokinetics-pharmacodynamics, clinical correlation, and clinical trial simulations to predict the future. Antimicrob Agents Chemother 55(1):24–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Ahmad Z, Peloquin CA, Singh RP, Derendorf H, Tyagi S, Ginsberg A, Grosset JH, Nuermberger EL (2011) PA-824 exhibits time-dependent activity in a murine model of tuberculosis. Antimicrob Agents Chemother 55(1):239–245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Tasneen R, Williams K, Amoabeng O, Minkowski A, Mdluli KE, Upton AM, Nuermberger EL (2015) Contribution of the nitroimidazoles PA-824 and TBA-354 to the activity of novel regimens in murine models of tuberculosis. Antimicrob Agents Chemother 59(1):129–135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Meibohm B, Derendorf H (1997) Basic concepts of pharmacokinetic/pharmacodynamic (PK/PD) modelling. Int J Clin Pharmacol Ther 35(10):401–413

    CAS  PubMed  Google Scholar 

  19. Katsube T, Yamano Y, Yano Y (2008) Pharmacokinetic-pharmacodynamic modeling and simulation for in vivo bactericidal effect in murine infection model. J Pharm Sci 97(4):1606–1614

    Article  CAS  PubMed  Google Scholar 

  20. Katsube T, Yano Y, Yamano Y, Munekage T, Kuroda N, Takano M (2008) Pharmacokinetic-pharmacodynamic modeling and simulation for bactericidal effect in an in vitro dynamic model. J Pharm Sci 97(9):4108–4117

    Article  CAS  PubMed  Google Scholar 

  21. Nielsen EI, Cars O, Friberg LE (2011) Pharmacokinetic/pharmacodynamic (PK/PD) indices of antibiotics predicted by a semimechanistic PKPD model: a step toward model-based dose optimization. Antimicrob Agents Chemother 55(10):4619–4630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Tan YM, Clewell H, Campbell J, Andersen M (2011) Evaluating pharmacokinetic and pharmacodynamic interactions with computational models in supporting cumulative risk assessment. Int J Environ Res Public Health 8(5):1613–1630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Lyons MA, Reisfeld B, Yang RS, Lenaerts AJ (2013) A physiologically based pharmacokinetic model of rifampin in mice. Antimicrob Agents Chemother 57(4):1763–1771

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Friedman A, Turner J, Szomolay B (2008) A model on the influence of age on immunity to infection with Mycobacterium tuberculosis. Exp Gerontol 43(4):275–285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Vaddady PK, Lee RE, Meibohm B (2010) In vitro pharmacokinetic/pharmacodynamic models in anti-infective drug development: focus on TB. Future Med Chem 2(8):1355–1369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Charles River Laboratories Inc (2006) Charles River Laboratories Research Models & Services. http://www.criver.com

  27. Gibaldi M, Perrier D (1982) Pharmacokinetics. Marcel Dekker Inc, New York

    Google Scholar 

  28. Cheng S, Bois FY (2011) A mechanistic modeling framework for predicting metabolic interactions in complex mixtures. Environ Health Perspect 119(12):1712–1718

    Article  PubMed Central  PubMed  Google Scholar 

  29. Bernillon P, Bois FY (2000) Statistical issues in toxicokinetic modeling: a Bayesian perspective. Environ Health Perspect 108(Suppl 5):883–893

    Article  CAS  PubMed  Google Scholar 

  30. Frantz J (2012) G3data, version 1.5.2, Software. https://github.com/pn2200/g3data.git

  31. Bauer B, Reynolds M (2008) Recovering data from scanned graphs: performance of Frantz’s g3data software. Behav Res Methods 40(3):858–868

    Article  PubMed  Google Scholar 

  32. Chiu WA, Okino MS, Evans MV (2009) Characterizing uncertainty and population variability in the toxicokinetics of trichloroethylene and metabolites in mice, rats, and humans using an updated database, physiologically based pharmacokinetic (PBPK) model, and Bayesian approach. Toxicol Appl Pharmacol 241(1):36–60

    Article  CAS  PubMed  Google Scholar 

  33. Gelman A, Carlin JB, Stern HS, Rubin DB (2003) Bayesian data analysis, 2nd edn. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  34. Bois FY, Maszle DR (1997) MCSim: a Monte Carlo simulation program. J Stat Softw 2(i09):1–60

    Google Scholar 

  35. R Core Team (2012) R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  36. Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6(1):7–11

    Google Scholar 

  37. van der Graff PH, Benson N (2011) Systems pharmacology: bridging systems biology and pharmacokinetics-pharmacodynamics (PKPD) in drug discovery and development. Pharm Res 28(7):1460–1464

    Article  Google Scholar 

  38. Goutelle S, Bourguignon L, Jelliffe RW, Conte JE, Maire P (2011) Mathematical modeling of pulmonary tuberculosis therapy: Insights from a prototype model with rifampin. J Theor Biol 282(1):80–92

    Article  PubMed  Google Scholar 

  39. Magombedze G, Garira W, Mwenje E (2006) Mathematical modeling of chemotherapy of human TB infection. J Biol Syst 14:509–553

    Article  CAS  Google Scholar 

  40. Yang RS, El-Masri HA, Thomas RS, Dobrev ID, Dennison JE, Bae DS, Campain JA, Liao KH, Reisfeld B, Andersen ME, Mumtaz M (2004) Chemical mixture toxicology: from descriptive to mechanistic, and going on to in silico toxicology. Environ Toxicol Pharmacol 18(2):65–81

    Article  PubMed  Google Scholar 

  41. Mumtaz M, Fisher J, Blount B, Ruiz P (2012) Application of physiologically based pharmacokinetic models in chemical risk assessment. J Toxicol 904:603

    Google Scholar 

  42. Baciewicz AM, Chrisman CR, Finch CK, Self TH (2013) Update on rifampin, rifabutin, and rifapentine drug interactions. Curr Med Res Opin 29(1):1–12

    Article  CAS  PubMed  Google Scholar 

  43. Raybon JJ, Pray D, Morgan DG, Zoeckler M, Zheng M, Sinz M, Kim S (2011) Pharmacokinetic-pharmacodynamic modeling of rifampicin-mediated Cyp3a11 induction in steroid and xenobiotic X receptor humanized mice. J Pharmacol Exp Ther 337(1):75–82

    Article  CAS  PubMed  Google Scholar 

  44. Dooley KE, Flexner C, Andrade AS (2008) Drug interactions involving combination antiretroviral therapy and other anti-infective agents: repercussions for resource-limited countries. J Infect Dis 198(7):948–961

    Article  CAS  PubMed  Google Scholar 

  45. Rowland M, Peck C, Tucker G (2011) Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol 51:45–73

    Article  CAS  PubMed  Google Scholar 

  46. Gonzalez-Juarrero M (2012) Immunity to TB and targets for immunotherapy. Immunotherapy 4(2):187–199

    Article  CAS  PubMed  Google Scholar 

  47. Gonzalez-Juarrero M, Woolhiser LK, Brooks E, DeGroote MA, Lenaerts AJ (2012) Mouse model for efficacy testing of antituberculosis agents via intrapulmonary delivery. Antimicrob Agents Chemother 56(7):3957–3959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Srivastava S, Gumbo T (2011) In vitro and in vivo modeling of tuberculosis drugs and its impact on optimization of doses and regimens. Curr Pharm Des 17(27):2881–2888

    Article  CAS  PubMed  Google Scholar 

  49. de Steenwinkel JE, Aarnoutse RE, de Knegt GJ, Ten Kate MT, Teulen M, Verbrugh HA, Boeree MJ, van Soolingen D, Bakker-Woudenberg IA (2013) Optimization of the rifampin dosage to improve the therapeutic efficacy in tuberculosis treatment, using a murine model. Am J Respir Crit Care Med 187(10):1127–1134

    Article  CAS  PubMed  Google Scholar 

  50. Radboud University (2013) Pharmacokinetics and pharmacodynamics of high versus standard dose rifampicin in patients with pulmonary tuberculosis (High RIF). In: http://www.ClinicalTrials.gov [Internet], Bethesda (MD): National Library of Medicine (US). Available from: http://www.clinicaltrials.gov/ct2/show/results/NCT00760149, nLM Identifier: NCT00760149

  51. Radboud University (2014) Safety, tolerability, extended early bactericidal activity and PK of higher doses rifampicin in adults with pulmonary TB (HR1) In: http://www.ClinicalTrials.gov [Internet], Bethesda (MD): National Library of Medicine (US). Available from: http://clinicaltrials.gov/ct2/show/results/NCT00760149, nLM Identifier: NCT00760149

  52. McCune RM, Tompsett R (1956) Fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. I. The persistence of drug-susceptible tubercle bacilli in the tissues despite prolonged antimicrobial therapy. J Exp Med 104(5):737–762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Craig WA (1998) Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 26(1):1–10

    Article  CAS  PubMed  Google Scholar 

  54. Hoff DR, Ryan GJ, Driver ER, Ssemakulu CC, De Groote MA, Basaraba RJ, Lenaerts AJ (2011) Location of intra- and extracellular M. tuberculosis populations in lungs of mice and guinea pigs during disease progression and after drug treatment. PLoS One 6(3):e17550

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Dhar N, McKinney JD (2007) Microbial phenotypic heterogeneity and antibiotic tolerance. Curr Opin Microbiol 10(1):30–38

    Article  CAS  PubMed  Google Scholar 

  56. Rocco A, Kierzek AM, McFadden J (2013) Slow protein fluctuations explain the emergence of growth phenotypes and persistence in clonal bacterial populations. PLoS One 8(1):e54272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Wakamoto Y, Dhar N, Chait R, Schneider K, Signorino-Gelo F, Leibler S, McKinney JD (2013) Dynamic persistence of antibiotic-stressed mycobacteria. Science 339(6115):91–95

    Article  CAS  PubMed  Google Scholar 

  58. Gumbo T, Louie A, Deziel MR, Liu W, Parsons LM, Salfinger M, Drusano GL (2007) Concentration-dependent Mycobacterium tuberculosis killing and prevention of resistance by rifampin. Antimicrob Agents Chemother 51(11):3781–3788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Geli P, Andersson M, Svensson A, Andersson DI (2009) A multi-type branching model with varying environment for bacterial dynamics with postantibiotic effect. J Theor Biol 256(1):58–64

    Article  PubMed  Google Scholar 

  60. Geli P (2009) Modeling the mechanism of postantibiotic effect and determining implications for dosing regimens. J Math Biol 59(5):717–728

    Article  PubMed  Google Scholar 

  61. Lenaerts AJ, Gruppo V, Brooks JV, Orme IM (2003) Rapid in vivo screening of experimental drugs for tuberculosis using gamma interferon gene-disrupted mice. Antimicrob Agents Chemother 47(2):783–785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Pan H, Yan BS, Rojas M, Shebzukhov YV, Zhou H, Kobzik L, Higgins DE, Daly MJ, Bloom BR, Kramnik I (2005) Ipr1 gene mediates innate immunity to tuberculosis. Nature 434(7034):767–772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Flynn JL (2006) Lessons from experimental Mycobacterium tuberculosis infections. Microbes Infect 8(4):1179–1188

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Scott Irwin and Mary Ann De Groote (Colorado State University (CSU)), Joanne Turner (The Ohio State University), and Radha Shandil (formerly AstraZeneca, Bangalore, India) for helpful discussions. The authors also thank Brad Reisfeld and Raymond Yang (CSU) for a careful review and editing of an earlier version of this manuscript. This work was supported by National Institutes of Health Grant Number K25AI089945.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Lyons.

Appendix

Appendix

The PK/PD model used in the present work is described by Eqs. (323) and the corresponding compartmental structure shown in Fig. 5. The equations are those from Friedman et al. [24] and Lyons et al. [23] together with the modifications described in the "Materials and methods" section.

Fig. 5
figure 5

PK/PD model structure. a Intracellular (In) and extracellular (Ex) bacterial populations and killing kinetics parameters. \(B_{E}\): extracellular bacteria, \(B_{A}\): bacteria residing in activated macrophages, \(B_{I}\): bacteria residing in infected macrophages, \(k_{max}\): maximum kill rate, \(EC_{50}\): half-maximum effect drug concentration, and \(\gamma\): Hill coefficient. b Lung compartment with free rifampin drug concentration (\(f_{LU}C_{LU}\)) together with cell and cytokine populations (adapted from Friedman et al. [24]). \(M_{R}, M_{A}, \text {and}\; M_{I}\): resting, activated, and infected macrophages. \(I_{10}, I_{12}, I_{2}, \text {and}\; I_{\gamma }\): IL-10, IL-12, IL-2, and IFN-\(\gamma\). \(T_{4}\) and \(T_{8}\): CD4\(^{+}\) and CD8\(^{+}\) T cells. c Rifampin PBPK model compartments and blood flow (adapted from Lyons et al. [23])

Pharmacodynamics: TB model

The TB model and drug-bacteria interactions are described by Eqs. (313). The variable names, descriptions, and initial conditions used in the the present work are shown in Table 4. The parameter values that were not updated in the Bayesian calibration are shown in Table 5, while the updated parameters are the posterior mean values shown in Table 2.

$$\begin{aligned} \frac{dB_{I}}{dt}= \,&\alpha _{I}B_{I} \left( 1 - \frac{B_{I}^2}{B_{I}^{2} + (N M_{I})^{2}} \right) + k_{1} n_{3} M_{R} \frac{B_{E}}{B_{E} + c_{1}} - k_{2} N M_{I} \frac{B_{I}^{2}}{B_{I}^{2} + (N M_{I})^{2}} \nonumber \\&- n_{1} k_{3} B_{I} \frac{I_{\gamma }}{I_{\gamma } + c_{2}} + n_{2} k_{4} B_{A} \frac{I_{10}}{I_{10} + c_{3} I_{\gamma } + c_{4}} \nonumber \\&- B_{I} \frac{k_{max}^{In}(f_{LU} C_{LU})^{\gamma ^{In}}}{(EC_{50}^{In})^{\gamma ^{In}} + (f_{LU} C_{LU})^{\gamma ^{In}}} \end{aligned}$$
(3)
$$\begin{aligned} \frac{dB_{A}}{dt}= \,&\alpha _{A}B_{A} - n_{2} k_{4} B_{A} \frac{I_{10}}{I_{10} + c_{3} I_{\gamma } + c_{4}} + n_{1} k_{3} B_{I} \frac{I_{\gamma }}{I_{\gamma } + c_{2}} - n_{2} \mu _{MA}B_{A} \nonumber \\ {}&- B_{A} \frac{k_{max}^{In}(f_{LU} C_{LU})^{\gamma ^{In}}}{(EC_{50}^{In})^{\gamma ^{In}} + (f_{LU} C_{LU})^{\gamma ^{In}}}\end{aligned}$$
(4)
$$\begin{aligned} \frac{dB_{E}}{dt}=\, & \alpha _{E}B_{E} - k_{1} n_{3} M_{R} \frac{B_{E}}{B_{E} + c_{1}} + k_{2} N M_{I} \frac{B_{I}^{2}}{B_{I}^{2} + (N M_{I})^{2}} - k_{5} M_{A} B_{E} \nonumber \\ {}&+ n_{2} \mu _{MA} B_{A} - B_{E} \frac{k_{max}^{Ex}(f_{LU} C_{LU})^{\gamma ^{Ex}}}{(EC_{50}^{Ex})^{\gamma ^{Ex}} + (f_{LU} C_{LU})^{\gamma ^{Ex}}} \end{aligned}$$
(5)
$$\begin{aligned} \frac{dM_{I}}{dt}=\, & k_{1} M_{R} \frac{B_{E}}{B_{E} + c_{1}} - k_{2} M_{I} \frac{B_{I}^2}{B_{I}^{2} + (N M_{I})^{2}} - k_{3} M_{I} \frac{I_{\gamma }}{I_{\gamma } + c_{2}} \nonumber \\ {}&+ k_{4} M_{A} \frac{I_{10}}{I_{10} + c_{3} I_{\gamma } + c_{4}} - \mu _{MI} M_{I} \end{aligned}$$
(6)
$$\begin{aligned} \frac{dM_{A}}{dt}= \,& - k_{4} M_{A} \frac{I_{10}}{I_{10} + c_{3} I_{\gamma } + c_{4}} + k_{3} M_{I} \frac{I_{\gamma }}{I_{\gamma } + c_{2}} - \mu _{MA} M_{A}\nonumber \\&+ k_{6} M_{R} \frac{B_{E}}{B_{E} + c_{5}} \frac{I_{\gamma }}{I_{\gamma } + c_{6}} \end{aligned}$$
(7)
$$\begin{aligned} \frac{dI_{10}}{dt}= \,& k_{7} M_{I} \frac{c_{7}}{I_{10} + c_{7}} - \mu _{10}I_{10} \end{aligned}$$
(8)
$$\begin{aligned} \frac{dI_{12}}{dt}=\, & k_{8} M_{A} \frac{c_{8}}{I_{10} + c_{8}} + k_{9} M_{R} \frac{B_{E}}{B_{E} + c_{9}} - \mu _{12} I_{12} \end{aligned}$$
(9)
$$\begin{aligned} \frac{dI_{2}}{dt}= \,& k_{10} T_{4} - \left( k_{11}T_{4} + k_{12} T_{8} \right) \frac{I_{2}}{I_{2} + c_{10}} - \mu _{2}I_{2} \end{aligned}$$
(10)
$$\begin{aligned} \frac{dI_{\gamma }}{dt}=\, & \left( \lambda _{u}(t) T_{4} + \lambda _{y}(t) T_{8}\right) \frac{I_{12}}{I_{12} + c_{11}} - \mu _{\gamma } I_{\gamma } \end{aligned}$$
(11)
$$\begin{aligned} \frac{dT_{4}}{dt}=\, & {} \lambda _{z}(t) M_{A} I_{12} + k_{13} T_{4} \frac{I_{2}}{I_{2} + c_{10}} - \mu _{T4} T_{4} \end{aligned}$$
(12)
$$\begin{aligned} \frac{dT_{8}}{dt}=\, & {} \lambda _{x}(t) \left( M_{A} + M_{I} \right) I_{12} + k_{14}T_{8} \frac{I_{2}}{I_{2} + c_{10}} - \mu _{T8}T_{8} \end{aligned}$$
(13)

The functions \(\lambda _{i}(t), \; i = \{x,y,z,u\}\) were implemented here as \(\lambda _{i}(t) = \lambda _{i} \cdot \theta (t - t_{delay})\), where \(t_{delay} = 14\) days, and \(\theta (x) = 1 (0)\) for \(x\ge 0(x<0)\) is a step function.

Table 4 PD model variables and initial conditions (day 7 post-infection) used in the present work. The variable names, descriptions, and values are from Friedman et al. [24]
Table 5 Baseline PD model parameters that were not updated in the Bayesian calibration procedure. The parameter names, descriptions, and values are from Friedman et al. [24]

Pharmacokinetics: PBPK model

The PBPK model is described by Eqs. (1423) with initial conditions all set to zero. The subscripts, T, on the tissue volumes, \(V_{T}\), drug concentrations, \(C_{T}\), blood flow rates, \(Q_{T}\), and tissue/blood partition coefficients, \(P_{T}\), denote abbreviations for the model compartments as; V: venous blood, LU: lung, A: arterial blood, BR: brain, F: fat, SK: skin, K: kidney, S: spleen, G: gut, GL: gut lumen, L: liver, LA: hepatic artery, CR: carcass. Fractional tissue volumes, \(V_{TC}\), and blood flow rates, \(Q_{TC}\), were scaled to total values as \(V_{T} = V_{TC}\cdot BW\) and \(Q_{T} = Q_{CC}\cdot BW^{0.75}\). BW is body weight, and \(Q_{CC}\) is an allometric coefficient for cardiac output. Fractional clearance was also scaled as \(CL = CL_{C} \cdot BW^{0.75}\). Drug concentration in plasma was determined from concentration in venous blood as \(C_{plasma} = C_{V}/BP\). The parameter values that were not updated in the Bayesian calibration are shown in Tables 6 and 7, while the updated parameters are given in Table 2.

$$\begin{aligned} V_{V}\frac{dC_{V}}{dt}=\, & {} \sum _{T} Q_{T} C_{T}/P_{T} - Q_{C}C_{V},\nonumber \\&\qquad T = \{BR,F,H,M,B,SK,K,L,CR\} \end{aligned}$$
(14)
$$\begin{aligned} V_{LU} \frac{dC_{LU}}{dt}= \,& {} Q_{C}\left( C_{V} - C_{LU}/P_{LU}\right) \end{aligned}$$
(15)
$$\begin{aligned} V_{A}\frac{dC_{A}}{dt}=\, & {} Q_{C} \left( C_{LU}/P_{LU} - C_{A} \right) \end{aligned}$$
(16)
$$\begin{aligned} V_{T}\frac{dC_{T}}{dt}=\, & {} Q_{T} \left( C_{V} - C_{T}/P_{T}\right) , \quad T = \{BR,\,F,\,H,\,M,\,B,\,SK,\,S,\,CR\} \end{aligned}$$
(17)
$$\begin{aligned} V_{K}\frac{dC_{K}}{dt}=\, & {} Q_{K}\left( C_{A} - C_{K}/P_{K} \right) - f_{R}\cdot CL \cdot C_{A} \end{aligned}$$
(18)
$$\begin{aligned} V_{L} \frac{dC_{L}}{dt}=\, & {} Q_{LA}C_{A} + Q_{S}C_{S}/P_{S} + C_{G}Q_{G}/P_{G} - Q_{L}C_{L}/P_{L} \end{aligned}$$
(19)
$$\begin{aligned}&- (1-f_{R})\cdot CL \cdot \left( Q_{LA}C_{A} + Q_{S}C_{S}/P_{S} + Q_{G}C_{G}/P_{G}\right) /Q_{L} \end{aligned}$$
(20)
$$\begin{aligned} V_{G}\frac{dC_{G}}{dt}=\,Q_{G}\left( C_{A} - C_{G}/P_{G}\right) + k_{a}A_{OD} + k_{r}A_{GL} \end{aligned}$$
(21)
$$\begin{aligned} \frac{dA_{GL}}{dt}=\,&(1 - f_{R})\cdot CL \cdot \left( Q_{LA}C_{A} + Q_{S}C_{S}/P_{S} + Q_{G}C_{G}/P_{G}\right) /Q_{L} \nonumber \\&- \left( k_{r} + k_{F}\right) A_{GL} \end{aligned}$$
(22)
$$\begin{aligned} \frac{dA_{OD}}{dt}=\, & {} - k_{a}\cdot A_{OD} + F_{a}\cdot D \cdot \sum _{n=0} \delta (t - t_{n}) \end{aligned}$$
(23)

The summation in Eq. (14) is over all tissues draining into the venous blood compartment; for liver, \(Q_{L} = \left( Q_{LA}+Q_{S}+Q_{G} \right)\). The symbols \(A_{OD}\) and \(A_{GL}\) in Eqs. (2123) are the amounts of drug input to the gut and in the gut lumen. The delta function in Eq. (23) describes pulsed oral bolus dosing (D = dose), with times of administration, \(t_{n}, \; n = 0, \ldots , n_{max}-1\), with \(n_{max}\) the maximum number of doses in the treatment interval.

Table 6 Baseline anatomical/physiological PBPK model parameters that were not updated in the Bayesian calibration procedure
Table 7 Baseline rifampin-dependent PBPK model parameters that were not updated in the Bayesian calibration procedure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyons, M.A., Lenaerts, A.J. Computational pharmacokinetics/pharmacodynamics of rifampin in a mouse tuberculosis infection model. J Pharmacokinet Pharmacodyn 42, 375–389 (2015). https://doi.org/10.1007/s10928-015-9419-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-015-9419-z

Keywords

Navigation