Skip to main content
Log in

Ubiquity: a framework for physiological/mechanism-based pharmacokinetic/pharmacodynamic model development and deployment

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Practitioners of pharmacokinetic/pharmacodynamic modeling routinely employ various software packages that enable them to fit differential equation based mechanistic or empirical models to biological/pharmacological data. The availability and choice of different analytical tools, while enabling, can also pose a significant challenge in terms of both, implementation and transferability. A package has been developed that addresses these issues by creating a simple text-based format, which provides methods to reduce coding complexity and enables the modeler to describe the components of the model based on the underlying physiochemical processes. A Perl script builds the system for multiple formats (ADAPT, MATLAB, Berkeley Madonna, etc.), enabling analysis across several software packages and reducing the chance for transcription error. Workflows can then be built around this package, which can increase efficiency and model availability. As a proof of concept, tools are included that allow models constructed in this format to be run with MATLAB both at the scripting level and through a generic graphical application that can be compiled and run as a stand-alone application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lipscomb JC, Haddad S, Poet T, Krishnan K (2012) Physiologically-based pharmacokinetic (PBPK) models in toxicity testing and risk assessment. In: Johanson G (ed) In technologies for toxicity. Springer, New York, pp 76–95

    Chapter  Google Scholar 

  2. Abuqayyas L, Balthasar JP (2012) Application of knockout mouse models to investigate the influence of FcγR on the tissue distribution and elimination of 8C2, a murine IgG1 monoclonal antibody. Int J Pharm 439:8–16. doi:10.1016/j.ijpharm.2012.09.042

    Article  PubMed  CAS  Google Scholar 

  3. Jones HM, Dickins M, Youdim K, Gosset JR, Attkins NJ, Hay TL et al (2012) Application of PBPK modelling in drug discovery and development at Pfizer. Xenobiotica 42:94–106. doi:10.3109/00498254.2011.627477

    Article  PubMed  CAS  Google Scholar 

  4. Iyengar R, Zhao S, Chung S-W, Mager DE, Gallo JM (2012) Merging systems biology with pharmacodynamics. Sci Transl Med 4:126–227. doi:10.1126/scitranslmed.3003563

    Article  Google Scholar 

  5. Luu KT, Kraynov E, Kuang B, Vicini P, Zhong W-Z (2013) Modeling, simulation, and translation framework for the preclinical development of monoclonal antibodies. AAPS J 15:551–558. doi:10.1208/s12248-013-9464-8

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Chien JY, Friedrich S, Heathman MA, Alwis DP, Sinha V (2005) Pharmacokinetics/pharmacodynamics and the stages of drug development: role of modeling and simulation. AAPS J 7:544–559. doi:10.1208/aapsj070355

    Article  CAS  Google Scholar 

  7. Lavé T, Parrott N, Grimm HP, Fleury A, Reddy M (2007) Challenges and opportunities with modelling and simulation in drug discovery and drug development. Xenobiotica 37:1295–1310. doi:10.1080/00498250701534885

    Article  PubMed  CAS  Google Scholar 

  8. Rosenthal RE (2006) GAMS—a user’s guide. GAMS Development Corporation, Washington, DC

    Google Scholar 

  9. Harrold JM, Parker RS (2009) Clinically relevant cancer chemotherapy dose scheduling via mixed-integer optimization. Comput Chem Eng 33:2042–2054. doi:10.1016/j

    Article  CAS  Google Scholar 

  10. Fritzson P (2011) Introduction to modeling and simulation of technical and physical systems with modelica. Wiley, Hoboken

    Book  Google Scholar 

  11. Hucka, M (2010) The systems biology markup language (SBML): language specification for level 3 version 1 core. http://sbml.org/Documents/Specifications. Accessed 24 November 3013

  12. Moodie, S L, Swat, M J, Kristensen, N R, Le Novère, N (2013). PharmML: the pharmacometrics markup language. Drug disease model resource. http://www.ddmore.eu/pharmml. Accessed 24 November 2013

  13. Holford, N (2013). Model Coding Language Specification Draft 5 version 0.8. Drug Disease Model Resource. http://www.ddmore.eu/mdl. Accessed 24 November 2013

  14. D’Argenio DZ, Schumitzky A, Wang X (2009) ADAPT 5 user’s guide: pharmacokinetic/pharmacodynamic systems analysis software. Biomedical simulations resource. University of Southern California, Los Angeles

    Google Scholar 

  15. Macey R, Oster G, Zahnley T (2000) Berkeley Madonna user’s guide, Department of Molecular and Cellular Biology. University of California, Berkeley

    Google Scholar 

  16. Maiwald T, Timmer J (2008) Dynamical modeling and multi-experiment fitting with PottersWheel. Bioinformatics 24:2037–2043. doi:10.1093/bioinformatics/btn350

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Lavielle M, Mentré F (2007) Estimation of population pharmacokinetic parameters of saquinavir in HIV patients with the MONOLIX software. J Pharmacokinet Pharmacodyn 34:229–249. doi:10.1007/s10928-006-9043-z

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Chan PLS, Jacqmin P, Lavielle M, McFadyen L, Weatherley B (2010) The use of the SAEM algorithm in MONOLIX software for estimation of population pharmacokinetic-pharmacodynamic-viral dynamics parameters of maraviroc in asymptomatic HIV subjects. J Pharmacokinet Biopharm 38:41–61. doi:10.1007/s10928-010-9175-z

    Article  Google Scholar 

  19. Mager DE (2006) Target-mediated drug disposition and dynamics. Biochem Pharmacol 72:1–10. doi:10.1016/j.bcp.2005.12.041

    Article  PubMed  CAS  Google Scholar 

  20. Dayneka NL, Garg V, Jusko WJ (1993) Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 21:457–478. doi:10.1007/BF01061691

    Article  PubMed  CAS  Google Scholar 

  21. Dirks NL, Meibohm B (2010) Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet 49:633–659. doi:10.2165/11535960-000000000-00000

    Article  PubMed  CAS  Google Scholar 

  22. Vieira P, Rajewsky K (1988) The half-lives of serum immunoglobulins in adult mice. Eur J Immunol 18:313–316. doi:10.1002/eji.1830180221

    Article  PubMed  CAS  Google Scholar 

  23. Shah DK, Betts AM (2012) Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Biopharm 39:67–86. doi:10.1007/s10928-011-9232-2

    Article  CAS  Google Scholar 

  24. Beal SL, Sheiner LB, Boeckmann A, Bauer RJ (2009) NONMEM user’s guides. (1989–2009). Icon Development Solutions, Ellicott City

    Google Scholar 

Download references

Acknowledgments

We would like to express our appreciation to Indranil Bhattacharya, Itrat Harrold, Ryan Nolan, Robert Parker, and Yulia Vugmeyster for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Harrold.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ZIP 3535 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrold, J.M., Abraham, A.K. Ubiquity: a framework for physiological/mechanism-based pharmacokinetic/pharmacodynamic model development and deployment. J Pharmacokinet Pharmacodyn 41, 141–151 (2014). https://doi.org/10.1007/s10928-014-9352-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-014-9352-6

Keywords

Navigation