Skip to main content
Log in

Processing and Characterization of Environmentally Friendly Composites from Biobased Polyethylene and Natural Fillers from Thyme Herbs

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The main aim of this research work is to assess the potential of a distillery waste from thyme as multifunctional filler in natural fiber reinforced plastics (NFRP) with biobased polyethylene matrix. Several ethylene-based copolymers with different co-monomers (vinyl alcohol, methyl methacrylate, glycidyl methacrylate and acrylic acid) were used as compatibilizer agents to overcome the lack of compatibility between the highly hydrophobic matrix and the highly hydrophilic lignocellulosic filler. The effect of the compatibilizer type and amount, as well as the lignocellulosic filler content was followed by thermal, mechanical, morphological and rheological characterizations. In addition to the typical filler effect, thyme also provides a remarkable increase in thermal stability at moderate temperatures with a positive effect on widening the processing window. The compatibilizer agent that offers best balanced properties is the glycidyl methacrylate copolymer with a noticeable increase in stiffness, flexural and tensile strength. Regarding processability, the viscosity increases with the filler content. This is highly important at low shear rates but the effect is almost negligible at high shear rates typical of injection molding processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kord B, Ravanfar P, Ayrilmis N (2016) Influence of organically modified nanoclay on thermal and combustion properties of bagasse reinforced HDPE nanocomposites. J Polym Environ. doi:10.1007/s10924-016-0897-x

    Google Scholar 

  2. Satyanarayana KG, Arizaga GGC, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—An overview. Prog Polym Sci 34(9):982–1021

    Article  CAS  Google Scholar 

  3. Boronat T et al (2015) Development of a biocomposite based on green polyethylene biopolymer and eggshell. Mater Des 68:177–185

    Article  CAS  Google Scholar 

  4. Carbonell-Verdú A et al (2015) Development of slate fiber reinforced high density polyethylene composites for injection molding. Compos Part B Eng 69:460–466

    Article  Google Scholar 

  5. Alves C et al (2010) Ecodesign of automotive components making use of natural jute fiber composites. J Cleaner Prod 18(4):313–327

    Article  CAS  Google Scholar 

  6. Ashori A (2008) Wood–plastic composites as promising green-composites for automotive industries!. Bioresour Technol 99(11):4661–4667

    Article  CAS  Google Scholar 

  7. Shalwan A, Yousif BF (2013) In state of art: mechanical and tribological behaviour of polymeric composites based on natural fibres. Mater Des 48:14–24

    Article  CAS  Google Scholar 

  8. Farag MM (2008) Quantitative methods of materials substitution: application to automotive components. Mater Des 29(2):374–380

    Article  CAS  Google Scholar 

  9. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364

    Article  CAS  Google Scholar 

  10. Christian SJ, Billington SL (2009) Sustainable biocomposites for construction. In: Proceedings for Composites & Polycon. American Composites Manufacturers Association, Tampa, FL USA

  11. Berthet M-A et al (2016) Torrefaction treatment of lignocellulosic fibres for improving fibre/matrix adhesion in a biocomposite. Mater Des 92:223–232

    Article  CAS  Google Scholar 

  12. Yang H-S et al (2006) Water absorption behavior and mechanical properties of lignocellulosic filler–polyolefin bio-composites. Compos Struct 72(4):429–437

    Article  Google Scholar 

  13. Syed MA et al (2011) Studies on the physico-mechanical, thermal, and morphological behaviors of high density polyethylene/coleus spent green composites. J Appl Polym Sci 119(4):1889–1895

    Article  CAS  Google Scholar 

  14. Ferrero B et al (2013) Green composites based on wheat gluten matrix and Posidonia oceanica waste fibers as reinforcements. Polym Compos 34(10):1663–1669

    Article  CAS  Google Scholar 

  15. Matkó S et al (2005) Flame retardancy of biodegradable polymers and biocomposites. Polym Degrad Stab 88(1):138–145

    Article  Google Scholar 

  16. Thakur MK et al (2016) Synthesis and applications of biodegradable soy based graft copolymers: a review. Acs Sustain Chem Eng 4(1):1–17

    Article  CAS  Google Scholar 

  17. Colom X et al (2003) Effects of different treatments on the interface of HDPE/lignocellulosic fiber composites. Compos Sci Technol 63(2):161–169

    Article  CAS  Google Scholar 

  18. Habibi Y et al (2008) Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptian agro-industrial residues. Compos Sci Technol 68(7–8):1877–1885

    Article  CAS  Google Scholar 

  19. Faruk O et al (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596

    Article  CAS  Google Scholar 

  20. Avérous L, Le Digabel F (2006) Properties of biocomposites based on lignocellulosic fillers. Carbohydr Polym 66(4):480–493

    Article  Google Scholar 

  21. Satapathy S, Kothapalli RVS (2017) Mechanical, dynamic mechanical and thermal properties of banana fiber/recycled high density polyethylene biocomposites filled with flyash cenospheres. J Polym Environ. doi:10.1007/s10924-017-0938-0

    Google Scholar 

  22. Elkhaoulani A et al (2013) Mechanical and thermal properties of polymer composite based on natural fibers: Moroccan hemp fibers/polypropylene. Mater Des 49:203–208

    Article  CAS  Google Scholar 

  23. Arib RMN et al (2006) Mechanical properties of pineapple leaf fibre reinforced polypropylene composites. Mater Des 27(5):391–396

    Article  CAS  Google Scholar 

  24. Olumuyiwa AJ, Isaac TS, Samuel SO (2012) Study of mechanical behaviour of coconut shell reinforced polymer matrix composite. J Miner Mater Charact Eng 11(08):774

    Google Scholar 

  25. Yang H-S et al (2007) Effect of different compatibilizing agents on the mechanical properties of lignocellulosic material filled polyethylene bio-composites. Compos Struct 79(3):369–375

    Article  Google Scholar 

  26. Ferrero B et al (2015) Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polym Compos 36(8):1378–1385

    Article  CAS  Google Scholar 

  27. Simkovic I et al (2017) Composite films prepared from agricultural by-products. Carbohydr Polym 156:77–85

    Article  CAS  Google Scholar 

  28. Ruiz-Navajas Y et al, (2012) Chemical characterization and antibacterial activity of Thymus moroderi and Thymus piperella essential oils, two Thymus endemic species from southeast of Spain. Food Control 27(2):294–299

    Article  CAS  Google Scholar 

  29. Ruiz-Navajas Y et al (2013) In vitro antibacterial and antioxidant properties of chitosan edible films incorporated with Thymus moroderi or Thymus piperella essential oils. Food Control 30(2):386–392

    Article  CAS  Google Scholar 

  30. Díaz-García MC et al (2015) Production of an anthocyanin-rich food colourant from Thymus moroderi and its application in foods. J Sci Food Agric 95(6):1283–1293

    Article  Google Scholar 

  31. Perdones Á, Chiralt A, Vargas M (2016) Properties of film-forming dispersions and films based on chitosan containing basil or thyme essential oil. Food Hydrocoll 57:271–279

    Article  CAS  Google Scholar 

  32. Meybodi NM, Ebrahimi MT, Mortazavian AM (2016) Ethnic fermented foods and beverage of Iran. In: Tamang JP (ed) Ethnic fermented foods and alcoholic beverages of Asia. Springer, India, pp 309–322

    Chapter  Google Scholar 

  33. Arsenijević J et al (2016) Bioactivity of herbal tea of Hungarian thyme based on the composition of volatiles and polyphenolics. Ind Crops Prod 89:14–20

    Article  Google Scholar 

  34. Boutoial K et al (2013) Effect of feeding goats with distilled and non-distilled thyme leaves (Thymus zygis subp. gracilis) on milk and cheese properties. J Dairy Res 80(04):448–456

    Article  CAS  Google Scholar 

  35. Bauermann U, Thomann R (2012) By-products of medicinal and aromatic plant processing—A useful resource for antioxidants. Zeitschrift Fur Arznei- Gewurzpflanzen 17(2):88–92

    Google Scholar 

  36. Kaya H et al (2013) Effects of dietary supplementation of essential oils and vitamin e on performance, egg quality and Escherichia coli count in excreta. Indian J Animal Res 47(6):515–520

    Google Scholar 

  37. Tserki V et al (2005) Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part I. Surface chemical modification and characterization of waste flour. Compos Part A 36(7):965–974

    Article  Google Scholar 

  38. Sailaja R (2005) Mechanical properties of esterified tapioca starch–LDPE blends using LDPE-co-glycidyl methacrylate as compatibilizer. Polym Int 54(2):286–296

    Article  CAS  Google Scholar 

  39. Revert A et al (2015) Upgrading brewer’s spent grain as functional filler in polypropylene matrix. Polym Compos. doi:10.1002/pc.23558

    Google Scholar 

  40. ISO (2012) Plastics—Determination of tensile properties—Part 1: General principles

  41. ISO (2011) Plastics. determination of flexural properties

  42. ISO (2003) Plastics and ebonite. Determination fo indentation hardness by means of durometer (Shore Hardness)

  43. ISO (2010) Plastics. Determination of charpy impact properties—Part 1: Non-instrumented impact test

  44. ISO (2014) Plastics—Determination of the fluidity of plastics using capillary and slit-die rheometers

  45. Balart JF et al (2016) Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Compos Part B 86:168–177

    Article  CAS  Google Scholar 

  46. Balart JF et al (2016) Manufacturing and properties of biobased thermoplastic composites from poly(lactid acid) and hazelnut shell wastes. Polym Compos. doi:10.1002/pc.24007

    Google Scholar 

  47. Sanchez-Jimenez PE et al (2012) Nanoclay nucleation effect in the thermal stabilization of a polymer nanocomposite: a kinetic mechanism change. J Phys Chem C 116(21):11797–11807

    Article  CAS  Google Scholar 

  48. Perinovic S, Andricic B, Erceg M (2010) Thermal properties of poly(L-lactide)/olive stone flour composites. Thermochim Acta 510(1–2):97–102

    Article  CAS  Google Scholar 

  49. Salasinska K, Ryszkowska J (2012) Natural fibre composites from polyethylene waste and hazelnut shell: dimensional stability, physical, mechanical and thermal properties. Compos Interfaces 19(5):321–332

    Article  CAS  Google Scholar 

  50. Yussuf AA, Massoumi I, Hassan A (2010) Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: the influence of the natural fibers on the mechanical, thermal and biodegradability properties. J Environ Polym Degr 18(3):422–429

    Article  CAS  Google Scholar 

  51. Hornsby PR, Hinrichsen E, Tarverdi K (1997) Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres: part I fibre characterization. J Mater Sci 32(2):443–449

    Article  CAS  Google Scholar 

  52. Adhikary KB, Pang SS, Staiger MP (2008) Dimensional stability and mechanical behaviour of wood-plastic composites based on recycled and virgin high-density polyethylene (HDPE). Compos Part B 39(5):807–815

    Article  Google Scholar 

  53. Rahman MR et al (2009) Mechanical properties of polypropylene composites reinforced with chemically treated Abaca. Compos Part A 40(4):511–517

    Article  Google Scholar 

  54. Ruiz-Navajas Y et al (2013) In vitro antioxidant and antifungal properties of essential oils obtained from aromatic herbs endemic to the southeast of Spain. J Food Protect 76(7):1218–1225

    Article  CAS  Google Scholar 

  55. Ruseckaite RA, Jiménez A (2003) Thermal degradation of mixtures of polycaprolactone with cellulose derivatives. Polym Degrad Stab 81(2):353–358

    Article  CAS  Google Scholar 

  56. Williams ML, Landel RF, Ferry JD (1955) Mechanical properties of substances of high molecular weight. 19. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77(14):3701–3707

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Economy and Competitiveness—MINECO through the grant number MAT2014-59242-C2-1-R. Authors also wish to thank “Licores Sinc, S.A.” for kindly supplying the Thymus moroderi wastes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Boronat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montanes, N., Garcia-Sanoguera, D., Segui, V.J. et al. Processing and Characterization of Environmentally Friendly Composites from Biobased Polyethylene and Natural Fillers from Thyme Herbs. J Polym Environ 26, 1218–1230 (2018). https://doi.org/10.1007/s10924-017-1025-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1025-2

Keywords

Navigation