Skip to main content
Log in

Biodegradable Tragacanth Gum Based Silver Nanocomposite Hydrogels and Their Antibacterial Evaluation

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this article, biodegradable tragacanth gum (TG) biopolymer based silver nanocomposite hydrogels (SNCHs) were prepared with acrylamide as monomer using a simple redox polymerization method. TG acts as stabilizer to produce uniform and large silver nanoparticles (Ag-NPs) in presence of Terminalia chebula (TC) leaf extract in the hydrogel network. Forier transform infrared spectroscopy demonstrated the structural units of functional groups of polymeric backbone of the hydrogels. The formation of Ag-NPs in TG based hydrogels was confirmed by UV–Vis spectra. The morphology of homogeneously dispersed Ag-NPs throughout hydrogel networks was confirmed by scanning electron microscopy. TEM analysis indicates that Ag-NPs with average diameters of around 5 nm formed within the hydrogel networks. The evaluation of antibacterial activity of Ag-NPs performed against gram-negative Escherichia coli and gram-positive Bacillus subtilis bacteria and obtained results proved that these newly developed hydrogels have great potential for use in wound healing as well as water purification applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lemire JA, Harrison JJ, Turner RJ (2013) Nat Rev Microbiol 11:371–384

    Article  CAS  Google Scholar 

  2. Muñoz-Bonilla A, Fernandez-Garcia M (2012) Prog Polym Sci 37:281–339

    Article  Google Scholar 

  3. Raza MA, Kanwal Z, Rauf A, Sabri AN, Riaz S, Naseem S (2016) Nanomaterials 74:1–15

    Google Scholar 

  4. Murthy PSK, Mohan YM, Varaprasad K, Sreedhar B, Raju KM (2008) J Colloid Interface Sci 318:217–224

    Article  CAS  Google Scholar 

  5. Mohan YM, Vimala K, Thomas V, Varaprasad K, Sreedhar B (2010) J Colloid Interface Sci 342:73–84

    Article  Google Scholar 

  6. Kim Y, Babu VR, Thangadurai DT, Krishna Rao KSV, Cha H, Kim C, Joo W, Ill Lee Y (2011) Bull Korean Chem Soc 32:553–558

    Article  CAS  Google Scholar 

  7. Murthy PSK, Park S, Mohan YM, Koh WG (2011) J Ind Eng Chem 17:293–297

    Article  Google Scholar 

  8. Varaprasad K, Mohan YM, Ravindra S, Reddy NN, Vimala K, Monika K, Sreedhar B, Raju KM (2010) J Appl Polym Sci 115:1199–1207

    Article  CAS  Google Scholar 

  9. Cha H, Babu VR, Krishna Rao KSV, Kim YH, Mei S, Joo WH, Lee Y (2012) Bull Korean Chem Soc 33:3191–3195

    Article  CAS  Google Scholar 

  10. Siraj S, Rao KM, Sudhakar P, Chandrababu A, Jaffer Mohiddin G, Chowdoji Rao K, Subha MCS (2013) Int J Carbohydr Chem 1:539636

    Google Scholar 

  11. Rao KM, Krishna Rao KSV, Ramanjaneyulu G, Chowdoji Rao K, Subha MCS, Ha CS (2013) J Biomed Mater Res Part A 102:3196–3206

    Google Scholar 

  12. Manjula B, Varaprasad K, Sadiku R, Ramam K, Reddy GVS, Raju KM (2014) J Biomed Mater Res Part A 102A:928–934

    Article  CAS  Google Scholar 

  13. Varaprasad K, Siva Mohan Reddy G, Jayaramudu J, Sadiku R, Ramama K, Sinha Ray S (2014) Biomater Sci 2:257–263

    Article  CAS  Google Scholar 

  14. Rosiak MJ, Yoshii F (1999) Nucl Instrum Methods Phys Res Sect B 4:56–64

    Article  Google Scholar 

  15. Chiellini F, Petrucci ER, Solaro R (2002) J Appl Polym Sci 85:2729–2741

    Article  CAS  Google Scholar 

  16. Zhang J, Peppas AN (2000) Macromolecules 33:102–107

    Article  CAS  Google Scholar 

  17. Thomas V, Mohan YM, Sreedhar B, Bajpai SK (2007) J Colloid Interface Sci 315:389–395

    Article  CAS  Google Scholar 

  18. Vimala K, Samba Sivudu K, Mohan YM, Sreedhar B, Raju KM (2009) Carbohydr Polym 75:463–471

    Article  CAS  Google Scholar 

  19. Quaresma P, Soares L, Contar L, Miranda A, Osorio I, Carvalho PA, Franco R, Pereira E (2009) Green Chem 11:1889–1893

    Article  CAS  Google Scholar 

  20. Ahmad S, Ahmad M, Swami BL, Ikram S (2016) J Adv Res 7:17–28

    Article  Google Scholar 

  21. Sekhar EC, Krishna Rao KSV, Rao KM (2016) Mater Lett 174:129–133

    Article  Google Scholar 

  22. Sekhar EC, Krishna Rao KSV, Rao KM, Pradeep Kumar S (2016) Cogent Chem 2:1–14

    Google Scholar 

  23. Liu J, Willfor S, Xu C (2015) Bioactive Carbohydr Diet Fibre 56:31–61

    Article  Google Scholar 

  24. Jayaramudu T, Raghavendra GM, Varaprasad K, Sadiku R, Ramam K, Raju KM (2013) Carbohyd Polym 95:188–194

    Article  CAS  Google Scholar 

  25. Varaprasad K, Sadiku R (2015) J Appl Polym Sci. doi:10.1002/APP.42781

    Google Scholar 

  26. Mohammadifar MA, Musavi SM, Kiumarsi A, Williams PA (2006) Int J Biol Macromol 38:31–39

    Article  CAS  Google Scholar 

  27. Tischer CA, Iacomini M, Gorin PAJ (2002) Carbohydr Res 337:1647–1655

    Article  CAS  Google Scholar 

  28. Anderson DMW, Ashby P, Busuttil A, Kempson SA, Lawson ME (1984) Toxicol Lett 21:83–89

    Article  CAS  Google Scholar 

  29. Eastwood MA, Brydon WG, Anderson DMW (1984) Toxicol Lett 21:73–81

    Article  CAS  Google Scholar 

  30. Hagiwara A, Boonyaphiphat P, Kawabe M, Naito H, Shirai T, Ito N (1992) Food Chem Toxicol 30:673–679

    Article  CAS  Google Scholar 

  31. Moghbel A, Agheli H, Kalantari E, Naji M (2008) Toxicol Lett 180:S154

    Article  Google Scholar 

  32. Saruchi, Kaith BS, Jindal R, Kumar V (2015) Polym Degrad Stabil 115:24–31

    Article  CAS  Google Scholar 

  33. Singh B, Sharma V (2014) Carbohyd Polym 101:928–940

    Article  CAS  Google Scholar 

  34. Saruchi, Kaith BS, Jindal R, Kapur GS (2013) Iran Polym J 22:561–570

    Article  CAS  Google Scholar 

  35. Masoumi A, Ghaemy M (2014) Carbohyd Polym 108:206–215

    Article  CAS  Google Scholar 

  36. Hemmati K, Masoumi A, Ghaemy M (2016) Carbohyd Polym 136:630–640

    Article  CAS  Google Scholar 

  37. Hemmati K, Masoumi A, Ghaemy M (2015) RSC Adv 5:85310–85318

    Article  CAS  Google Scholar 

  38. Hemmati K, Ghaemy M (2016) Int J Biol Macromol 87:415–425

    Article  CAS  Google Scholar 

  39. Hemmati K, Masoumi A, Ghaemy M (2015) Polymer 59:49–56

    Article  CAS  Google Scholar 

  40. Hosseini MS, Hemmati K, Ghaemy M (2016) Int J Biol Macromol 82:806–815

    Article  Google Scholar 

  41. Badakhshanian E, Hemmati K, Ghaemy M (2016) Polymer 90:282–289

    Article  CAS  Google Scholar 

  42. Peppas NA, Franson NM (1983) J Polym Sci Part B 21:983–997

    CAS  Google Scholar 

  43. Madaghiele M, Demitri C, Sannino A, Ambrosio L (2014) Burn Trauma 2:153–161

    Article  Google Scholar 

  44. Jaiswal M, Koul V, Dinda AK (2016) J Appl Polym Sci. doi:10.1002/APP.43472

    Google Scholar 

  45. Montazer M, Keshvari A, Kahali P (2016) Carbohyd Polym 154:257–266

    Article  CAS  Google Scholar 

  46. Mohan YM, Lee KJ, Premkumar T, Geckeler KE (2007) Polymer 48:158–164

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was fully supported by the 2017 Yeungnam University Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Soo Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, K.M., Kumar, A., Krishna Rao, K.S.V. et al. Biodegradable Tragacanth Gum Based Silver Nanocomposite Hydrogels and Their Antibacterial Evaluation. J Polym Environ 26, 778–788 (2018). https://doi.org/10.1007/s10924-017-0989-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-0989-2

Keywords

Navigation