Skip to main content
Log in

Novel Tough Crystalline Blends of Polylactide with Ethylene Glycol Derivative of POSS

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Blending of polylactide (PLA) with low stereoregularity and polyhedral oligomeric silsesquioxane grafted with arms of poly(ethylene glycol) methyl ether, acting as a plasticizer, allowed us previously to obtain a novel stable elastomeric-like material. The present contribution focuses on the properties of semi-crystalline PLA plasticized with this compound. Melt blends of PLA with 5–15 wt% of the plasticizer, were compression molded, quenched and annealed, which enabled cold-crystallization. The glass transition temperature of the blends and their drawability depended on their crystallinity and plasticizer content. The best ductility was reached at the plasticizer content of 15 wt%; the achieved strain at break was 6.5 (650%) and 1.3 (130%), for the quenched and annealed material, respectively. The latter value exceeded 20 times the strain at break of neat crystalline PLA. The tensile toughness of the annealed 15 wt% blend was 12 times larger than that of crystalline PLA. Moreover, annealing of 15 wt% blend improved its yield strength by 40%. Despite the two peaks of the loss modulus, indicating the two glass transitions in this blend, no heterogeneities were found by scanning electron microscopy, indicating that the plasticizer enriched phase formed instead of distinct inclusions of the plasticizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pluta M, Galeski A (2002) J Appl Polym Sci 86:1386

    Article  CAS  Google Scholar 

  2. Masirek R, Piorkowska E, Galeski A, Mucha M (2007) J Appl Polym Sci 105:282

    Article  CAS  Google Scholar 

  3. Bojda J, Piorkowska E (2016) Polym Test 50:172

    Article  CAS  Google Scholar 

  4. Perego G, Cella GD, Bastioli C (1996) J Appl Polym Sci 59:37

    Article  CAS  Google Scholar 

  5. Labrecque LV, Kumar RA, Dave V, Gross RA, McCarthy SP (1997) J Appl Polym Sci 66:1507

    Article  CAS  Google Scholar 

  6. Ljungberg N, Wesslen B (2002) J Appl Polym Sci 86:1227

    Article  CAS  Google Scholar 

  7. Yang JH, Shen Y, He WD, Zhang N, Huang T, Zhang JH, Wang Y (2013) J Appl Polym Sci 130:3498

    Article  CAS  Google Scholar 

  8. Li FJ, Liang JZ, Zhang SD, Zhu B (2015) J Polym Environ 23:407

    Article  Google Scholar 

  9. Sheth M, Kumar RA, Dave V, Gross RA, McCarthy SP (1997) J Appl Polym Sci 66:1495

    Article  CAS  Google Scholar 

  10. Baiardo M, Frisoni G, Scandola M, Rimelen M, Lips D, Ruffieux K, Wintermantel E (2003) J Appl Polym Sci 90:1731

    Article  CAS  Google Scholar 

  11. Hu Y, Rogunova M, Topolkaraev V, Hiltner A, Baer E (2003) Polymer 44:5701

    Article  CAS  Google Scholar 

  12. Hu Y, Hu YS, Topolkaraev V, Hiltner A, Baer E (2003) Polymer 44:5711

    Article  CAS  Google Scholar 

  13. Kulinski Z, Piorkowska E (2005) Polymer 46:10290

    Article  CAS  Google Scholar 

  14. Piorkowska E, Kulinski Z, Galeski A, Masirek R (2006) Polymer 47:7178

    Article  CAS  Google Scholar 

  15. Kowalczyk M, Pluta M, Piorkowska E, Krasnikova N (2012) J Appl Polym Sci 125:4292

    Article  CAS  Google Scholar 

  16. Pluta M, Piorkowska E (2015) Polym Test 41:209

    Article  CAS  Google Scholar 

  17. Okamoto K, IchikawaT, Yokohara T, Yamaguchi M (2009) Eur Polym J 45:2304

    Article  CAS  Google Scholar 

  18. Ljungberg N, Wesslen B (2004) J Appl Polym Sci 94:2140

    Article  CAS  Google Scholar 

  19. Ljungberg N, Wesslen B (2005) Biomacromolecules 6:1789

    Article  CAS  Google Scholar 

  20. Qin Y, Wang Y, Wu Y, Zhang Y, Li H, Yuan M (2015) J Polym Environ 23:374

    Article  CAS  Google Scholar 

  21. Burgos N, Tolaguera D, Fiori S, Jimenez A (2014) J Polym Environ 22:227

    Article  CAS  Google Scholar 

  22. Pluta M, Paul MA, Alexandre M, Dubois P (2006) J Polym Sci B 44:312

    Article  CAS  Google Scholar 

  23. Noda I, Satkowski MM, Dowrey AE, Marcott C (2004) Macromol Biosci 4:269

    Article  CAS  Google Scholar 

  24. Broz ME, VanderHart DL, Washburn NR (2003) Biomaterials 24:4181

    Article  CAS  Google Scholar 

  25. Jiang L, Wolcott MP, Zhang J (2006) Biomacromolecules 7:199

    Article  Google Scholar 

  26. Kowalczyk M, Piorkowska E (2012) J Appl Polym Sci 124:4579

    CAS  Google Scholar 

  27. Kowalczyk M, Piorkowska E, Dutkiewicz S, Sowinski P (2014) Eur Polym J 59:59

    Article  CAS  Google Scholar 

  28. Pluta M, Piorkowska E (2015) Polym Test 46:79

    Article  CAS  Google Scholar 

  29. Lezak E, Kulinski Z, Masirek R, Piorkowska E, Pracella M, Gadzinowska K (2008) Macromol Biosci 8:1190

    Article  CAS  Google Scholar 

  30. Li H, Huneault MA (2007) Polymer 48:6855

    Article  CAS  Google Scholar 

  31. Zubrowska A, Piorkowska E, Kowalewska A, Cichorek M (2015) Colloid Polym Sci 293:23

    Article  CAS  Google Scholar 

  32. Wang D, Fredericks PM, Haddad A, Hill DJT, Rasoul F, Whittaker AK (2011) Polym Degrad Stab 96:123

    Article  CAS  Google Scholar 

  33. Kim SK, Heo SJ, Koak JY, Lee JH, Lee YM, Chung DJ, Lee JI, Hong SD (2007) J Oral Rehabil 34:389

    Article  CAS  Google Scholar 

  34. Punshon G, Vara DS, Sales KM, Kidane AG, Salacinski HJ, Seifalian AM (2005) Biomaterials 26:6271

    Article  CAS  Google Scholar 

  35. Kim KO, Kim BS, Kim IS (2011) J Biomater Nanobiotech 2:201

    Article  CAS  Google Scholar 

  36. Wang DK, Varanasi S, Strounina E, Hill DJT, Symons AL, Whittaker AK, Rasoul F (2014) Biomacromolecules 15:666

    Article  CAS  Google Scholar 

  37. Zhang J, Tashiro K, Tsuji H, Domb AJ (2008) Macromolecules 41:1352

    Article  CAS  Google Scholar 

  38. Sarasua JR, Prudhomme RE, Wisniewski M, Le Borgne A, Spassky N (1998) Macromolecules 31:3895

    Article  CAS  Google Scholar 

  39. Sarasua JR, Zuza E, Imaz N, Meaurio E (2008) Macromol Symp 272:81

    Article  CAS  Google Scholar 

  40. Silvestre C, Cimmino S, Martuscelli E, Karasz FE, MacKnight WJ (1987) Polymer 28:1190

    Article  CAS  Google Scholar 

  41. Hamon L, Grohens Y, Soldera A, Holl Y (2001) Polymer 42:9697

    Article  CAS  Google Scholar 

  42. Schurer JW, de Boer A, Challa G (1975) Polymer 16:201

    Article  CAS  Google Scholar 

  43. Vorenkamp EJ, ten Brinke G, Meijer JG, Jager H, Challa G (1985) Polymer 26:1725

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research project has been supported by the European Union European Regional Development Fund, Contract No. POIG.01.01.02-10-123/09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Piorkowska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubrowska, A., Piorkowska, E. & Bojda, J. Novel Tough Crystalline Blends of Polylactide with Ethylene Glycol Derivative of POSS. J Polym Environ 26, 145–151 (2018). https://doi.org/10.1007/s10924-016-0920-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0920-2

Keywords

Navigation