Skip to main content

Advertisement

Log in

Evaluation of Damage in Concrete Under Uniaxial Compression by Measuring Electric Response to Mechanical Impact

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The paper proposes a method of evaluating damage in concrete under uniaxial compression. The evaluation procedure is based on measuring the electric response to mechanical impact. Measurements are made periodically while the external load is gradually increased. The experiment is carried out using samples of normal weight concrete. The algorithm for evaluating concrete degradation under uniaxial compression is based on analyzing signals in terms of time and frequency. The paper analyzes a number of measured and computed parameters of the electric response: the energy attenuation coefficient of the electric responses; the correlation coefficient of the signal spectra prior to and during the loading; the spectral centroid of the signal spectrum and the frequency of the dominant spectral peak. Experimental results show that the array of the collected data allows for evaluation of cracking processes in concrete under an external compressive load. The proposed method can be used to monitor the development of damage in concrete under uniaxial compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ohno, K., Ohtsu, M.: Crack classification in concrete based on acoustic emission. Constr. Build. Mater. 24, 2339–2346 (2010)

    Article  Google Scholar 

  2. Yun, H.D., Choi, W.C., Seo, S.Y.: Acoustic emission activities and damage evaluation of reinforced concrete beams strengthened with CFRPsheets. NDT&E Int. 43, 615–628 (2010)

    Article  Google Scholar 

  3. Aggelis, D.G., Mpalaskas, A.C., Matikas, T.E.: Investigation of different fracture modes in cement-based materials by acoustic emission. Cem. Concr. Res. 48, 1–8 (2013)

    Article  Google Scholar 

  4. Carpinteri, A., Lacidogna, G., Accornero, F., Mpalaskas, A.C., Matikas, T.E., Aggelis, D.G.: Influence of damage in the acoustic emission parameters. Cem. Concr. Compos. 44, 9–16 (2013)

    Article  Google Scholar 

  5. Iyer, S., Sinha, S.K., Pedrick, M.K., Tittmann, B.R.: Evaluation of ultrasonic inspection and imaging systems for concrete pipes. Autom. Constr. 22, 149–164 (2012)

    Article  Google Scholar 

  6. Molero, M., Aparicio, S., Al-Assadi, G., Casati, M.J., Hernández, M.G., Anaya, J.J.: Evaluation of freeze-thaw damage in concrete by ultrasonic imaging. NDT&E Int. 52, 86–94 (2012)

    Article  Google Scholar 

  7. Krause, M., Milmann, B., Mielentz, F., Streicher, D., Redmer, B., Mayer, K., Langenberg, K.J., Schickert, M.: Ultrasonic imaging methods for investigation of post-tensioned concrete structures: a study of interfaces at artificial grouting faults and its verification. J. Nondestruct. Eval. 27, 67–82 (2008)

    Article  Google Scholar 

  8. Bui, D., Kodjo, S.A., Rivard, P., Fournier, B.: Evaluation of concrete distributed cracks by ultrasonic travel time shift under an external mechanical perturbation: study of indirect and semi-direct transmission configurations. J. Nondestruct. Eval. 32, 25–36 (2013)

    Article  Google Scholar 

  9. Antonaci, P., Bruno, C., Gliozzi, A., Scalerandi, M.: Monitoring evolution of compressive damage in concrete with linear and nonlinear ultrasonic methods. Cem. Concr. Res. 40(7), 1106–1113 (2010)

    Article  MATH  Google Scholar 

  10. Schubert, F., Köhler, B.: Ten lectures on impact-echo. J. Nondestruct. Eval. 27, 5–21 (2008)

    Article  Google Scholar 

  11. Krzemień, K., Hager, I.: Post-fire assessment of mechanical properties of concrete with the use of the impact-echo method. Constr. Build. Mater. 96, 155–163 (2015)

    Article  Google Scholar 

  12. Pei-Ling, Yeh Po-Liang: Spectral tomography of concrete structures based on impact echo depth spectra. NDT&E Int. 44(8), 692–702 (2011)

    Article  Google Scholar 

  13. Tsai, Y.T., Zhu, J.: Simulation and experiments of airborne zero-group-velocity lamb waves in concrete plate. J. Nondestruct. Eval. 31, 373–382 (2012)

    Article  Google Scholar 

  14. Kee, S., Zhu, J.: Using air-coupled sensors to determine the depth of a surface-breaking crack in concrete. J. Acoust. Soc. Am. 127, 1279–1287 (2010)

    Article  Google Scholar 

  15. In, Ch., Schempp, F.: A fully non-contact, air-coupled ultrasonic measurement of surface breaking cracks in concrete. J. Nondestruct. Eval. 34, 272–382 (2015)

    Article  Google Scholar 

  16. Algernon, D., Gräfe, B., Mielentz, F., Köhler, B., Schubert, F.: Imaging of the elastic wave propagation in concrete using scanning techniques: application for impact-echo and ultrasonic echo methods. J. Nondestruct. Eval. 27, 83–97 (2008)

    Article  Google Scholar 

  17. Chekroun, M., Le Marrec, L., Abraham, O., Durand, O., Villain, G.: Analysis of coherent surface wave dispersion and attenuation for non-destructive testing of concrete. Ultrasonics 49(8), 743–751 (2009)

    Article  Google Scholar 

  18. Seppänen, A., Hallaji, M., Pour-Ghaz, M.: A functionally layered sensing skin for the detection of corrosive elements and cracking. Struct. Health Monit. 1–10 (2016)

  19. Dai, H., Gallo, G.J., Schumacher, T., Thostenson, E.T.: A novel methodology for spatial damage detection and imaging using a distributed carbon nanotube-based composite sensor combined with electrical impedance tomography. J. Nondestruct. Eval. 35, 26 (2016)

    Article  Google Scholar 

  20. Smyl, D., Rashetnia, R., Seppänen, A., Pour-Ghaz, M.: Can electrical resistance tomography be used for imaging unsaturated moisture flow in cement-based materials with discrete cracks? Cem. Concr. Res. 91, 61–72 (2017)

    Article  Google Scholar 

  21. Nitsan, U.: Electromagnetic emission accompanying fracture of quartz-bearing rocks. Geophys. Res. Lett. 4(8), 333–337 (1977)

    Article  Google Scholar 

  22. Sun, M., Li, Z., Song, X.: Piezoelectric effect of hardened cement paste. Cem. Concr. Compos. 26(6), 717–720 (2004)

    Article  Google Scholar 

  23. O’Keefee, S.G., Thiel, D.V.: A mechanism for the production of electromagnetic radiation during fracture of brittle materials. Phys. Earth Planet Inter. 89, 127–135 (1995)

    Article  Google Scholar 

  24. Koktavy, P.: Experimental study of electromagnetic emission signals generated by crack generation in composite materials. Meas. Sci. Technol. 20(1), 15704 (2009)

    Article  Google Scholar 

  25. Aydin, A., Prance, R.J., Prance, H., Harland, C.J.: Observation of pressure stimulated voltages in rocks using an electric potential sensor. Appl. Phys. Lett. 95(12), 124102 (2009)

    Article  Google Scholar 

  26. Anastasiadis, C., Triantis, D., Stavrakas, I., Vallianatos, F.: Pressure stimulated currents (PSC) in marble samples. Ann. Geophys. (Italy) 47(1), 21–28 (2004)

    Google Scholar 

  27. Kyriazopoulos, A., Anastasiadis, C., Triantis, D., Brown, C.J.: Non-destructive evaluation of cement-based materials from pressure-stimulated electrical emission. Preliminary results. Constr. Build. Mater. 29(4), 1980–1990 (2011)

    Article  Google Scholar 

  28. Triantis, D., Stavrakas, I., Kyriazopoulos, A., Hloupis, G., Agioutantis, Z.: Pressure stimulated electrical emissions from cement mortar used as failure predictors. Int. J. Fract. 175, 53–61 (2012)

    Article  Google Scholar 

  29. Fursa, T.V., Osipo, K.Y., Dann, D.D.: Development of a nondestructive method for testing the strength of concrete with a faulted structure based on the phenomenon of mechanoelectric transformations. Russ. J. Nondestruct. 47(5), 323–328 (2011)

    Article  Google Scholar 

  30. Fursa, T.V., Savelev, A.V., Osipov, K.Y.: Interrelation between electromagnetic response parameters and impact excitation characteristics in insulators. Tech. Phys. 48(11), 1419–1424 (2003)

    Article  Google Scholar 

  31. Fursa, T.V., Dann, D.D., KY, Osipov: Evaluation of freeze-thaw damage in concrete by the parameters of electric response under impact excitation. Constr. Build. Mater. 102, 182–189 (2016)

    Article  Google Scholar 

  32. Fursa, T.V., Dann, D.D.: Mechanoelectrical transformations in heterogeneous materials with piezoelectric inclusions. Tech. Phys. 56(8), 1112–1117 (2011)

    Article  Google Scholar 

  33. Fursa, T.V., Osipov, K., Lyukshin, B.A., Utsyn, G.E.: The development of a method for crack-depth estimation in concrete by the electric response parameters to pulse mechanical excitation. Meas. Sci. Technol. 25, 055605 (2014)

    Article  Google Scholar 

  34. Fursa, T.V., Lyukshin, B.A., Utsyn, G.E.: Relation between the electric response and the characteristics of elastic waves under shock excitation of heterogeneous dielectric materials with piezoelectric inclusions. Tech. Phys. 58(2), 263–266 (2013)

    Article  Google Scholar 

  35. Becker, J., Jacobs, L.J., Qu, J.: Characterization of cement-based materials using diffuse ultrasound. J. Eng. Mech. 129(12), 1478–1484 (2003)

    Article  Google Scholar 

  36. Quiviger, A., Payan, C., Chaix, J.-F., Garnier, V., Salin, J.: Effect of the presence and size of a real macro-crack on diffuse ultrasound in concrete. NDT&E Int. 45, 128–132 (2012)

  37. Osipov, K.Y., Fursa, T.V.: Evaluating the depth of open cracks in concrete from parameters of electric response to elastic impact excitation. Tech. Phys. Lett. 39(5), 481–483 (2013)

    Article  Google Scholar 

  38. Fursa, T.V., Utsyn, G.E., Korzenok, I.N., Petrov, M.V., Reutov, YuA: Using electric response to mechanical impact for evaluating the durability of the GFRP-concrete bond during the freeze-thaw process. Compos. Part B 90, 392–398 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This study has been funded with a Russian Science Foundation Grant (Project No. 16-19-10119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Petrov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fursa, T.V., Dann, D.D., Petrov, M.V. et al. Evaluation of Damage in Concrete Under Uniaxial Compression by Measuring Electric Response to Mechanical Impact. J Nondestruct Eval 36, 30 (2017). https://doi.org/10.1007/s10921-017-0411-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-017-0411-y

Keywords

Navigation