Skip to main content
Log in

The Partial Fast Fourier Transform

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

An efficient algorithm for computing the one-dimensional partial fast Fourier transform \(f_j=\sum _{k=0}^{c(j)}e^{2\pi ijk/N} F_k\) is presented. Naive computation of the partial fast Fourier transform requires \({\mathcal O}(N^2)\) arithmetic operations for input data of length N. Unlike the standard fast Fourier transform, the partial fast Fourier transform imposes on the frequency variable k a cutoff function c(j) that depends on the space variable j; this prevents one from directly applying standard FFT algorithms. It is shown that the space–frequency domain can be partitioned into rectangular and trapezoidal subdomains over which efficient algorithms can be developed. As in the previous work of Ying and Fomel (Multiscale Model Simul 8(1):110–124, 2009), the contribution from rectangular regions can be reduced to a series of fractional-phase Fourier transforms over squares, each of which can be reduced to a convolution. In this work, we demonstrate that the partial Fourier transform over trapezoidal domains can also be reduced to a convolution. Since the computational complexity of a dealiased convolution of N inputs is \({\mathcal O}(N\log N)\), a fast algorithm for the partial Fourier transform is achieved, with a lower overall coefficient than obtained by Ying and Fomel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amidror, I.: Mastering the Discrete Fourier Transform in One, Two or Several Dimensions: Pitfalls and Artifacts, vol. 43. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  2. Bailey, D.H., Swarztrauber, P.N.: The fractional Fourier transform and applications. SIAM Rev. 33(3), 389–404 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Biondi, B.: 3D Seismic Imaging No. 14 in Investigations in Geophysics Series. Society of Exploration Geophysicists Tulsa (2006)

  4. Bluestein, L.I.: A linear filtering approach to the computation of discrete Fourier transform. IEEE Trans. Audio Electroacoust. 18(4), 451–455 (1970)

    Article  Google Scholar 

  5. Bowman, J.C., Roberts, M.: Efficient dealiased convolutions without padding. SIAM J. Sci. Comput. 33(1), 386–406 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bowman, J.C., Roberts, M.: FFTW++: a fast Fourier transform \({{\rm C}}^{++}\) header class for the FFTW3 library. http://fftwpp.sourceforge.net (2010)

  7. Buneman, O.: Stable on-line creation of sines or cosines of successive angles. Proc. IEEE 75(10), 1434–1435 (1987)

    Article  Google Scholar 

  8. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19(90), 297–301 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ferguson, R.J., Margrave, G.F.: Prestack depth migration by symmetric nonstationary phase shift. Geophysics 67(2), 594–603 (2002)

    Article  Google Scholar 

  10. Frigo, M., Johnson, S.G.: FFTW. http://www.fftw.org

  11. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE 93(2), 216–231 (2005)

    Article  Google Scholar 

  12. Gauss, C.F.: Nachlass: theoria interpolationis methodo nova tractata. In: Carl Friedrich Gauss Werke, vol. 3, pp. 265–327. Königliche Gesellschaft der Wissenschaften, Göttingen (1866)

  13. Goldstine, H.H.: A History of Numerical Analysis from the 16th Through the 19th Century, vol. 2. Springer, Berlin (2012)

    MATH  Google Scholar 

  14. Hairer, E., Lubich, C., Schlichte, M.: Fast numerical solution of nonlinear volterra convolution equations. SIAM J. Sci. Stat. Comput. 6(3), 532–541 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hassanieh, H., Indyk, P., Katabi, D., Price, E.: Simple and practical algorithm for sparse Fourier transform. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1183–1194. SIAM (2012)

  16. Heideman, M.T., Johnson, D.H., Burrus, C.S.: Gauss and the history of the fast Fourier transform. IEEE ASSP Mag. 1(4), 14–21 (1984)

    Article  MATH  Google Scholar 

  17. Heideman, M.T., Johnson, D.H., Burrus, C.S.: Gauss and the history of the fast Fourier transform. Arch. Hist. Exact Sci. 34(3), 265–277 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lubich, C., Schädle, A.: Fast convolution for nonreflecting boundary conditions. SIAM J. Sci. Comput. 24(1), 161–182 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Markel, J.: FFT pruning. IEEE Trans. Audio Electroacoust. 19(4), 305–311 (1971)

    Article  Google Scholar 

  20. Michielssen, E., Boag, A.: A multilevel matrix decomposition algorithm for analyzing scattering from large structures. IEEE Trans. Antennas Propag. 44(8), 1086–1093 (1996)

    Article  Google Scholar 

  21. Nussbaumer, H.J.: Fast Fourier Transform and Convolution Algorithms, vol. 2. Springer, Berlin (2012)

    MATH  Google Scholar 

  22. O’Neil, M., Rokhlin, V.: A new class of analysis-based fast transforms. Technical report, DTIC Document (2007)

  23. O’Neil, M., Woolfe, F., Rokhlin, V.: An algorithm for the rapid evaluation of special function transforms. Appl. Comput. Harmon. Anal. 28(2), 203–226 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rabiner, L.R., Schafer, R.W., Rader, C.M.: The chirp z-transform algorithm. IEEE Trans. Audio Electroacoust. 17(2), 86–92 (1969)

    Article  Google Scholar 

  25. Roberts, M., Bowman, J.C.: Multithreaded implicitly dealiased convolutions. J. Comput. Phys. (2017). https://doi.org/10.1016/j.jcp.2017.11.026

    MATH  Google Scholar 

  26. Schuster, G.T.: Seismic Interferometry, vol. 1. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  27. Ying, L.: Sparse Fourier transform via butterfly algorithm. SIAM J. Sci. Comput. 31(3), 1678–1694 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ying, L., Fomel, S.: Fast computation of partial Fourier transforms. Multiscale Model. Simul. 8(1), 110–124 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Brendan Pass for his comments on an earlier version of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Bowman.

Additional information

This work was supported by the Natural Sciences and Engineering Research Council of Canada and is based on a report submitted to the University of Alberta in partial fulfillment of the requirements for the degree of Master of Science.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bowman, J.C., Ghoggali, Z. The Partial Fast Fourier Transform. J Sci Comput 76, 1578–1593 (2018). https://doi.org/10.1007/s10915-018-0675-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0675-0

Keywords

Mathematics Subject Classification

Navigation