Skip to main content
Log in

An Efficient Primal-Dual Method for the Obstacle Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We solve the non-linearized and linearized obstacle problems efficiently using a primal-dual hybrid gradients method involving projection and/or \(L^1\) penalty. Since this method requires no matrix inversions or explicit identification of the contact set, we find that this method, on a variety of test problems, achieves the precision of previous methods with a speed up of 1–2 orders of magnitude. The derivation of this method is disciplined, relying on a saddle point formulation of the convex problem, and can be adapted to a wide range of other constrained convex optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Code available at http://www.math.montana.edu/dzosso/code.

  2. None of these sources explicitly specifies the boundary values other than claiming \(f=0\) on “some” (undisclosed) location, clearly different from the square border \(\partial \varOmega \).

References

  1. Arrow, K.J., Hurwicz, L., Uzawa, H.: Studies in Linear and Non-Linear Programming. Cambridge Univ Press, Cambridge (1958)

    MATH  Google Scholar 

  2. Attouch, H., Buttazzo, G., Michaille, G. (eds.): Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization, 2nd edn. SIAM, Philadelphia, PA (2014)

    MATH  Google Scholar 

  3. Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18(11), 2419–2434 (2009). doi:10.1109/TIP.2009.2028250

    Article  MathSciNet  Google Scholar 

  4. Bhaya, A., Kaszkurewicz, E.: Steepest descent with momentum for quadratic functions is a version of the conjugate gradient method. Neural Netw. Off. J. Int. Neural Netw. Soc. 17(1), 65–71 (2004). doi:10.1016/S0893-6080(03)00170-9

    Article  MATH  Google Scholar 

  5. Braess, D., Carstensen, C., Hoppe, R.H.W.: Convergence analysis of a conforming adaptive finite element method for an obstacle problem. Numer. Math. 107(3), 455–471 (2007). doi:10.1007/s00211-007-0098-6

    Article  MathSciNet  MATH  Google Scholar 

  6. Brezis, H., Sibony, M.: Méthodes d’approximation et d’itération pour les opérateurs monotones. Arch. Ration. Mech. Anal. 28(1), 59–82 (1968). doi:10.1007/BF00281564

    Article  MATH  Google Scholar 

  7. Caffarelli, L.A.: The obstacle problem revisited. J. Fourier Anal. Appl. 4(4–5), 383–402 (1998). doi:10.1007/BF02498216

    Article  MathSciNet  MATH  Google Scholar 

  8. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision 40(1), 120–145 (2011). doi:10.1007/s10851-010-0251-1

    Article  MathSciNet  MATH  Google Scholar 

  9. Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imaging Sci. 3(4), 1015–1046 (2010). doi:10.1137/09076934X

    Article  MathSciNet  MATH  Google Scholar 

  10. Friedmann, A.: Variational Principles and Free-Boundary Problems. Wiley, New York (1982)

    Google Scholar 

  11. Glowinski, R.: Numerical methods for nonlinear variational problems. Springer Science & Business Media, Berlin (2013)

    Google Scholar 

  12. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth newton method. SIAM J. Optim. 13(3), 865–888 (2002). doi:10.1137/S1052623401383558

    Article  MathSciNet  MATH  Google Scholar 

  13. Hintermüller, M., Kovtunenko, V.A., Kunisch, K.: Obstacle problems with cohesion: a hemivariational inequality approach and its efficient numerical solution. SIAM J. Optim. 21(2), 491–516 (2011). doi:10.1137/10078299

    Article  MathSciNet  MATH  Google Scholar 

  14. Hoppe, R.H.W.: Multigrid algorithms for variational inequalities. SIAM J. Numer. Anal. 24(5), 1046–1065 (1987). doi:10.1137/0724069

    Article  MathSciNet  MATH  Google Scholar 

  15. Johnson, C.: Adaptive finite element methods for the obstacle problem. Math. Model Method Appl. Sci. 02(04), 483–487 (1992). doi:10.1142/S0218202592000284

    Article  MathSciNet  MATH  Google Scholar 

  16. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Majava, K., Tai, X.C.: A level set method for solving free boundary problems associated with obstacles. Int. J. Numer. Anal. Model. 1(2), 157–171 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Nesterov, Y.: A method of solving a convex programming problem with convergence rate \(O(1/k^2)\). Sov. Math. Dokl. 27(2), 372–376 (1983)

    MATH  Google Scholar 

  19. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 4(5), 1–17 (1964). doi:10.1016/0041-5553(64)90137-5

    Article  Google Scholar 

  20. Qian, N.: On the momentum term in gradient descent learning algorithms. Neural Netw. 12(1), 145–151 (1999). doi:10.1016/S0893-6080(98)00116-6

    Article  Google Scholar 

  21. Rockafellar, R.T.: Conjugate duality and optimization. Soc. Ind. Appl. Math. (1974). doi:10.1137/1.9781611970524

    MATH  Google Scholar 

  22. Rodrigues, J.F.: Obstacle Problems in Mathematical Physics. Elsevier Science Publishers, Amsterdam (1987)

    MATH  Google Scholar 

  23. Scholz, R.: Numerical solution of the obstacle problem by the penalty method. Computing 32(4), 297–306 (1984). doi:10.1007/BF02243774

    Article  MathSciNet  MATH  Google Scholar 

  24. Sochen, N., Kimmel, R., Malladi, R.: A general framework for low level vision. IEEE Trans. Image Process. 7(3), 310–318 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tai, X.C.: Rate of convergence for some constraint decomposition methods for nonlinear variational inequalities. Numer. Math. 93(4), 755–786 (2003). doi:10.1007/s002110200404

    Article  MathSciNet  MATH  Google Scholar 

  26. Tran, G., Schaeffer, H., Feldman, W.M., Osher, S.J.: An \(L^1\) penalty method for general obstacle problems. SIAM J. Appl. Math. 75(4), 1424–1444 (2015). doi:10.1137/140963303

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, F., Cheng, X.L.: An algorithm for solving the double obstacle problems. Appl. Math. Comput. 201(1–2), 221–228 (2008). doi:10.1016/j.amc.2007.12.015

    MathSciNet  MATH  Google Scholar 

  28. Zhang, Y.: Multilevel projection algorithm for solving obstacle problems. Comput. Math. Appl. 41(12), 1505–1513 (2001). doi:10.1016/S0898-1221(01)00115-8

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. Tech. Rep. UCLA CAM Rep. 08–34 (2008). http://www.math.ucla.edu/applied/cam/ ftp://ftp.math.ucla.edu/pub/camreport/cam08-34.pdf

  30. Zhu, M., Wright, S.J., Chan, T.F.: Duality-based algorithms for total-variation-regularized image restoration. Comput. Optim. Appl. 47(3), 377–400 (2010). doi:10.1007/s10589-008-9225-2

    Article  MathSciNet  MATH  Google Scholar 

  31. Zosso, D., Bustin, A.: A primal-dual projected gradient algorithm for efficient Beltrami regularization. Tech. Rep. UCLA CAM Rep. 14–52 (2014). http://www.math.ucla.edu/applied/cam/ ftp://ftp.math.ucla.edu/pub/camreport/cam14-52.pdf

  32. Zosso, D., Osting, B.: A minimal surface criterion for graph partitioning. Inverse Probl. Imaging 10(4), 1149–1180 (2016). doi:10.3934/ipi.2016036

    Article  MathSciNet  MATH  Google Scholar 

  33. Zosso, D., Osting, B., Osher, S.J.: Elliptic PDE and primal-dual optimization methods. In Preparation (2015)

Download references

Acknowledgements

The authors thank W. Feldman, I. Kim, and G. Tran for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Zosso.

Additional information

DZ and BO gratefully acknowledge support from NSF DMS-1461138. DZ was also supported by UC Lab Fees Research Grant 12-LR-236660 and the W. M. Keck Foundation. SJO is supported by NSF DMS-1118971, UC Lab Fees Grant, and ONR Grant N00014-14-0444.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zosso, D., Osting, B., Xia, M. et al. An Efficient Primal-Dual Method for the Obstacle Problem. J Sci Comput 73, 416–437 (2017). https://doi.org/10.1007/s10915-017-0420-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0420-0

Keywords

Mathematics Subject Classification

Navigation