Skip to main content
Log in

Convergence analysis of a conforming adaptive finite element method for an obstacle problem

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The adaptive algorithm for the obstacle problem presented in this paper relies on the jump residual contributions of a standard explicit residual-based a posteriori error estimator. Each cycle of the adaptive loop consists of the steps ‘SOLVE’, ‘ESTIMATE’, ‘MARK’, and ‘REFINE’. The techniques from the unrestricted variational problem are modified for the convergence analysis to overcome the lack of Galerkin orthogonality. We establish R-linear convergence of the part of the energy above its minimal value, if there is appropriate control of the data oscillations. Surprisingly, the adaptive mesh-refinement algorithm is the same as in the unconstrained case of a linear PDE—in fact, there is no modification near the discrete free boundary necessary for R-linear convergence. The arguments are presented for a model obstacle problem with an affine obstacle χ and homogeneous Dirichlet boundary conditions. The proof of the discrete local efficiency is more involved than in the unconstrained case. Numerical results are given to illustrate the performance of the error estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth M. and Oden J.T. (2000). A Posteriori Error Estimation in Finite Element Analysis. Wiley, Chichester

    MATH  Google Scholar 

  2. Ainsworth M., Oden J.T. and Lee C.Y. (1993). Local a posteriori error estimators for variational inequalities. Numer. Methods Partial Differ. Equ. 9: 23–33

    Article  MATH  Google Scholar 

  3. Babuška I. and Strouboulis T. (2001). The Finite Element Method and its Reliability. Clarendon, Oxford

    Google Scholar 

  4. Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics. ETH-Zürich. Birkhäuser, Basel (2003)

  5. Bartels S. and Carstensen C. (2004). Averaging techniques yield reliable a posteriori finite element error control for obstacle problems. Numer. Math. 99: 225–249

    Article  MATH  Google Scholar 

  6. Binev P., Dahmen W. and DeVore R. (2004). Adaptive finite element methods with convergence rates. Numer. Math. 97: 219–268

    Article  MATH  Google Scholar 

  7. Braess D. (2005). A posteriori error estimators for obstacle problems—another look. Numer. Math. 101: 415–421

    Article  MATH  Google Scholar 

  8. Carstensen C. (2004). Some remarks on the history and future of averaging techniques in finite element error analysis. ZAMM 84: 3–21

    Article  MATH  Google Scholar 

  9. Carstensen C. (2005). A unifying theory of a posteriori finite element error control. Numer. Math. 100: 617–637

    Article  MATH  Google Scholar 

  10. Carstensen C. (2006). Reliable and efficient averaging techniques as universal tool for a posteriori finite element error control on unstructured grids. Int. J. Numer. Anal. Model. 3: 333–347

    MATH  Google Scholar 

  11. Carstensen C. and Hoppe R.H.W. (2005). Convergence analysis of an adaptive edge finite element method for the 2D eddy current equations. J. Numer. Math. 13: 19–32

    Article  MATH  Google Scholar 

  12. Carstensen C. and Hoppe R.H.W. (2006). Error reduction and convergence for an adaptive mixed finite element method. Math. Comp. 75: 1033–1042

    Article  MATH  Google Scholar 

  13. Carstensen C. and Hoppe R.H.W. (2006). Convergence analysis of an adaptive nonconforming finite element method. Numer. Math. 103: 251–266

    Article  MATH  Google Scholar 

  14. Carstensen C. and Verfürth R. (1999). Edge residuals dominate a posteriori error estimates for low order finite element methods. SIAM J. Numer. Anal. 36: 1571–1587

    Article  MATH  Google Scholar 

  15. Chen Z. and Nochetto R. (2000). Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84: 527–548

    Article  MATH  Google Scholar 

  16. Dörfler W. (1996). A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33: 1106–1124

    Article  MATH  Google Scholar 

  17. Eriksson K., Estep D., Hansbo P. and Johnson C. (1995). Computational Differential Equations. Cambridge University Press, Cambridge

    Google Scholar 

  18. Glowinski R., Lions J.L. and Trémolières R. (1981). Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam

    MATH  Google Scholar 

  19. Hackbusch W. and Mittelmann H.D. (1983). On multi-grid methods for variational inequalities. Numer. Math. 42: 65–76

    Article  MATH  Google Scholar 

  20. Hoppe R.H.W. (1987). Multigrid algorithms for variational inequalities. SIAM J. Numer. Anal. 24: 1046–1065

    Article  MATH  Google Scholar 

  21. Hoppe R.H.W. and Kornhuber R. (1994). Adaptive multilevel methods for obstacle problems. SIAM J. Numer. Anal. 31: 301–323

    Article  MATH  Google Scholar 

  22. Johnson C. (1992). Adaptive finite element methods for the obstacle problem. Math. Models Methods Appl. Sci. 2: 483–487

    Article  MATH  Google Scholar 

  23. Kinderlehrer D. and Stampacchia G. (1980). An Introduction to Variational Inequalities. Academic, New York

    MATH  Google Scholar 

  24. Kornhuber R. (1997). Adaptive Monotone Multigrid Methods for Nonlinear Variational Problems. Teubner, Stuttgart

    MATH  Google Scholar 

  25. Morin P., Nochetto R.H. and Siebert K.G. (2000). Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38: 466–488

    Article  MATH  Google Scholar 

  26. Neittaanmäki P. and Repin S. (2004). Reliable Methods for Mathematical Modelling. Error Control and A Posteriori Estimates. Elsevier, New York

    Google Scholar 

  27. Nochetto R.H., Siebert K.G. and Veeser A. (2003). Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math. 95: 163–195

    Article  MATH  Google Scholar 

  28. Nochetto R.H., Siebert K.G. and Veeser A. (2005). Fully localized a posteriori error estimators and barrier sets for contact problems. SIAM J. Numer. Anal. 42: 2118–2135

    Article  MATH  Google Scholar 

  29. Ortega J.M. and Rheinboldt W.C. (2000). Iterative Solution of Nonlinear Equations in Several Variables. SIAM, Philadelphia

    MATH  Google Scholar 

  30. Stevenson, R.: Optimality of a standard adaptive finite element method. Preprint. Department of Mathematics, University of Utrecht (2005)

  31. Suttmeier F.T. (2005). On a direct approach to adaptive FE-discretisations for elliptic variational inequalities. J. Numer. Math. 13: 73–80

    Article  MATH  Google Scholar 

  32. Veeser A. (2001). Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM J. Numer. Anal. 39: 146–167

    Article  MATH  Google Scholar 

  33. Veeser A. (2002). Convergent adaptive finite elements for the nonlinear Laplacian. Numer. Math. 92: 743–770

    Article  MATH  Google Scholar 

  34. Verfürth R. (1996). A Review of A Posteriori Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietrich Braess.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braess, D., Carstensen, C. & Hoppe, R.H.W. Convergence analysis of a conforming adaptive finite element method for an obstacle problem. Numer. Math. 107, 455–471 (2007). https://doi.org/10.1007/s00211-007-0098-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-007-0098-6

Mathematics Subject Classification (2000)

Navigation