Skip to main content
Log in

Nonuniformly Weighted Schwarz Smoothers for Spectral Element Multigrid

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A hybrid Schwarz/multigrid method for spectral element solvers to the Poisson equation in \(\mathbb {R}^2\) is presented. It extends the additive Schwarz method studied by Lottes and Fischer (J Sci Comput 24:45–78, 2005) by introducing nonuniform weight distributions based on the smoothed sign function. Using a V-cycle with only one pre-smoothing, the new method attains logarithmic convergence rates in the range from 1.2 to 1.9, which corresponds to residual reductions of almost two orders of magnitude. Compared to the original method, it reduces the iteration count by a factor of 1.5–3, leading to runtime savings of about 50%. In numerical experiments the method proved robust with respect to the mesh size and polynomial orders up to 32. Used as a preconditioner for the (inexact) CG method it is also suited for anisotropic meshes and easily extended to diffusion problems with variable coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bastian, P., Blatt, M., Scheichl, R.: Algebraic multigrid for discontinuous Galerkin discretizations of heterogeneous elliptic problems. Numer. Linear Algebra Appl. 19(2), 367–388 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blaheta, R.: GPCG-generalized preconditioned CG method and its use with non-linear and non-symmetric displacement decomposition preconditioners. Numer. Linear Algebra Appl. 9(6–7), 527–550 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bouwmeester, H., Dougherty, A., Knyazev, A.V.: Nonsymmetric preconditioning for conjugate gradient and steepest descent methods. Procedia Comput. Sci. 51, 276–285 (2015). ISSN 1877-0509

    Article  Google Scholar 

  4. Bramble, J.: Multigrid Methods. Pitman Research Notes in Mathematics Series, vol. 294. Longman Scientific & Technical, Harlow (1995)

    Google Scholar 

  5. Brenner, S.C., Zhao, J.: Convergence of multigrid algorithms for interior penalty methods. Appl. Num. Anal. Comp. Math. 2(1), 3–18 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Couzy, W., Deville, M.O.: A fast Schur complement method for the spectral element discretization of the incompressible Navier–Stokes equations. J. Comput. Phys. 116, 135–142 (1995)

    Article  MATH  Google Scholar 

  7. Deville, M.O., Fischer, P.F., Mund, E.H.: High-Order Methods for Incompressible Fluid Flow, vol. 1. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  8. Fischer, P.F., Lottes, J.W.: Hybrid Schwarz-multigrid methods for the spectral element method: Extensions to Navier–Stokes. In: Kornhuber, R., Périaux, J., Widlund, O., Hoppe, R., Pironneau, O., Xu, J. (eds.) Domain Decomposition Methods in Science and Engineering Series, pp. 35–49. Springer, Berlin (2004)

  9. Golub, G.H., Ye, Q.: Inexact preconditioned conjugate gradient method with inner-outer iteration. SIAM J. Sci. Comput. 21(4), 1305–1320 (1999). ISSN 10648275

    Article  MathSciNet  MATH  Google Scholar 

  10. Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195, 6011–6045 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Haupt, L., Stiller, J., Nagel, W.: A fast spectral element solver combining static condensation and multigrid techniques. J. Comput. Phys. 255, 384–395 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Heinrichs, W.: Line relaxation for spectral multigrid methods. J. Comput. Phys. 77, 166–182 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Janssen, B., Kanschat, G.: Adaptive multilevel methods with local smoothing for \(H^1\)- and \(H^{\rm curl}\)-conforming high order finite element methods. SIAM J. Sci. Comput. 33(4), 2095–2114 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kaasschieter, E.F.: Preconditioned conjugate gradients for solving singular systems. J. Comput. Appl. Math. 24, 265–275 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kanschat, G.: Multilevel methods for discontinuous Galerkin FEM on locally refined meshes. Comput. Struct. 82, 2437–2445 (2004)

    Article  Google Scholar 

  16. Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd edn. Oxford University Press, Oxford (2005)

    Book  MATH  Google Scholar 

  17. Kraus, J.K., Tomar, S.K.: A multilevel method for discontinuous Galerkin approximation of three-dimensional anisotropic elliptic problems. Numer. Linear Algebra Appl. 15(5), 417–438 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Loisel, S., Nabben, R., Szyld, D.: On hybrid multigrid-Schwarz algorithms. J. Sci. Comput. 36(2), 165–175 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lottes, J.W., Fischer, P.F.: Hybrid multigrid/Schwarz algorithms for the spectral element method. J. Sci. Comput. 24, 45–78 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lynch, R.E., Rice, J.R., Thomas, D.H.: Direct solution of partial difference equations by tensor product methods. Numer. Math. 6, 185–199 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  21. Maday, Y., Munoz, R.: Spectral element multigrid. II. Theoretical justification. J. Sci. Comput. 3, 323–353 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mitchell, W.F.: The hp-multigrid method applied to hp-adaptive refinement of triangular grids. Numer. Linear Algebr. 17, 211–228 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Notay, Y.: Flexible conjugate gradients. SIAM J. Sci. Comput. 22(4), 1444–1460 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Olson, L.: Algebraic multigrid preconditioning of high-order spectral elements for elliptic problems on a simplicial mesh. SIAM J. Sci. Comput. 29(5), 2189–2209 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pasquetti, R., Rapetti, F.: p-Multigrid method for Fekete-Gauss spectral element approximations of elliptic problems. Commun. Comput. Phys. 5(5), 667–682 (2009)

    MathSciNet  Google Scholar 

  26. Rønquist, E., Patera, A.: Spectral element multigrid. I. Formulation and numerical results. J. Sci. Comput. 2, 389–406 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic Press, Oxford (2000)

    MATH  Google Scholar 

  28. Varga, R.S.: Matrix Iterative Analysis. Springer Series in Computational Mathematics, vol. 27, 2nd ed. Springer, Berlin (2000)

  29. Wang, Z.J., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H., Hartmann, R., Hillewaert, K., Huynh, H., Kroll, N., May, G., Persson, P.-O., van Leer, B., Visbal, M.: High-order CFD methods: current status and perspective. Int. J. Numer. Methods Fluids 72(8), 811–845 (2013). ISSN 1097-0363

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Funding by German Research Foundation (DFG) in frame of the Project STI 157/4-1 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Stiller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stiller, J. Nonuniformly Weighted Schwarz Smoothers for Spectral Element Multigrid. J Sci Comput 72, 81–96 (2017). https://doi.org/10.1007/s10915-016-0345-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0345-z

Keywords

Navigation