Skip to main content
Log in

A Low Complexity Algorithm for Non-Monotonically Evolving Fronts

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A new algorithm is proposed to describe the propagation of fronts advected in the normal direction with prescribed speed function F. The assumptions on F are that it does not depend on the front itself, but can depend on space and time. Moreover, it can vanish and change sign. The novelty of our method is that its overall computational complexity is predicted to be comparable to that of the Fast Marching Method (Sethian in Proceedings of the National Academy Sciences 93:1591–1595, 1996); (Vladimirsky in Interfaces Free Bound 8(3):281–300, 2006) in most instances. This latter algorithm is \(\mathcal {O}(N^{n}\log N^{n})\) if the computational domain comprises \(N^{n}\) points. We use it in regions where the speed is bounded away from zero—and switch to a different formalism when \(F \approx 0\). To this end, a collection of so-called sideways partial differential equations is introduced. Their solutions locally describe the evolving front and depend on both space and time. The well-posedness and geometric properties of those equations are addressed. We then propose a convergent and stable discretization of the PDEs. The resulting algorithm is presented together with a thorough discussion of its features. The accuracy of the scheme is tested when F depends on both space and time. Each example yields an \(\mathcal {O}(1/N)\) global truncation error. We conclude with a discussion of the advantages and limitations of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. This follows directly from the fact that (21) is a first order Hamilton-Jacobi equation.

  2. TriScatteredInterp MatLab function

References

  1. Adalsteinsson, D., Sethian, J.A.: A fast level set method for propagating interfaces. J. Comput. Phys. 118(2), 269–277 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adalsteinsson, D., Sethian, J.A.: A level set approach to a unified model for etching, deposition, and lithography. I. Algorithms and two-dimensional simulations. J. Comput. Phys. 120(1), 128–144 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amenta, N., Bern, M., Kamvysselis, M.: A new Voronoi-based surface reconstruction algorithm. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’98, pp. 415–421. ACM, New York, NY, USA (1998)

  4. Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Modern Birkhäuser Classics. Birkhäuser, Boston (2008)

    MATH  Google Scholar 

  5. Barles, G.: Existence results for first order Hamilton Jacobi equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(5), 325–340 (1984)

    MathSciNet  MATH  Google Scholar 

  6. Carlini, E., Cristiani, E., Forcadel, N.: A non-monotone fast marching scheme for a Hamilton-Jacobi equation modeling dislocation dynamics. ENUMATH 2005, Santiago de Compostela (Spain) (2007)

  7. Carlini, E., Falcone, M., Forcadel, N., Monneau, R.: Convergence of a generalized fast-marching method for an eikonal equation with a velocity-changing sign. SIAM J. Numer. Anal. 46(6), 2920–2952 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chazal, F., Cohen-Steiner, D., Mérigot, Q.: Geometric inference for probability measures. Found. Comput. Math. 11(6), 733–751 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng, L.T., Tsai, Y.H.: Redistancing by flow of time dependent eikonal equation. J. Comput. Phys. 227(8), 4002–4017 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chopp, D.L.: Some improvements of the fast marching method. SIAM J. Sci. Comput. 23(1), 230–244 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chopp, D.L.: Another look at velocity extensions in the level set method. SIAM J. Sci. Comput. 31(5), 3255–3273 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Crandall, M.G., Evans, L.C., Lions, P.L.: Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 282(2), 487–502 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27(1), 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Crandall, M.G., Lions, P.L.: Two approximations of solutions of Hamilton-Jacobi equations. Math. Comput. 43(167), 1–19 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Crandall, M.G., Tartar, L.: Some relations between nonexpansive and order preserving mappings. Proc. Am. Math. Soc. 78(3), 385–390 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  18. Evans, L.: Partial Differential Equations. Graduate studies in Mathematics. American Mathematical Society, Providence (2010)

    Google Scholar 

  19. Falcone, M.: The minimum time problem and its applications to front propagation. In: Visintin, A., Buttazzo, G. (eds.) Motion by Mean Curvature and Related Topics, pp. 70–88. De Gruyter verlag, Berlin (1994)

  20. Forcadel, N., Le Guyader, C., Gout, C.: Generalized fast marching method: applications to image segmentation. Numer. Algorithms 48(1–3), 189–211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gibou, F., Fedkiw, R., Caflisch, R., Osher, S.: A level set approach for the numerical simulation of dendritic growth. J. Sci. Comput. 19(1–3), 183–199 (2003). Special issue in honor of the sixtieth birthday of Stanley Osher

    Article  MathSciNet  MATH  Google Scholar 

  22. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. SIGGRAPH Comput. Graph. 26(2), 71–78 (1992)

    Article  Google Scholar 

  23. Koike, S.: A Beginner’s Guide to the Theory of Viscosity Solutions. MSJ Memoirs. Mathematical Society of Japan, Tokyo (2004)

    MATH  Google Scholar 

  24. Lions, P.L., Rouy, E., Tourin, A.: Shape-from-shading, viscosity solutions and edges. Numerische Mathematik 64(1), 323–353 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lolla, T., Ueckermann, M., Yigit, K., Haley, P., Lermusiaux, P.: Path planning in time dependent flow fields using level set methods. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 166–173. River Centre, Saint Paul, Minnesota, USA (2012)

  26. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH Comput. Graph. 21(4), 163–169 (1987)

    Article  Google Scholar 

  27. Malladi, R., Sethian, J.A., Vemuri, B.C.: A fast level set based algorithm for topology-independent shape modeling. J. Math. Imaging Vision 6(2–3), 269–289 (1996)

    Article  MathSciNet  Google Scholar 

  28. Merriman, B., Bence, J.K., Osher, S.J.: Motion of multiple functions: a level set approach. J. Comput. Phys. 112(2), 334–363 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mitchell, I.: Dynamic programming algorithms for planning and robotics in continuous domains and the Hamilton-Jacobi equation (Slides presented for IROS meeting in France). http://www.cs.ubc.ca/mitchell/Talks/mitchellIROS.pdf (2008)

  30. Mulder, W., Osher, S., Sethian, J.A.: Computing interface motion in compressible gas dynamics. J. Comput. Phys. 100(2), 209–228 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Oberman, A.M.: Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton-Jacobi equations and free boundary problems. SIAM J. Numer. Anal. 44(2), 879–895 (2006). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  32. Osher, S., Cheng, L.T., Kang, M., Shim, H., Tsai, Y.H.: Geometric optics in a phase-space-based level set and eulerian framework. J. Comput. Phys. 179(2), 622–648 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Osher, S., Fedkiw, R.: Level set methods and dynamic implicit surfaces, Applied Mathematical Sciences, vol. 153. Springer, New York (2003)

    Book  MATH  Google Scholar 

  34. Osher, S., Sethian, J.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comp. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pauly, M., Gross, M., Kobbelt, L.P.: Efficient simplification of point-sampled surfaces. In: Proceedings of the Conference on Visualization ’02. VIS ’02, pp. 163–170. IEEE Computer Society, Washington, DC, USA (2002)

  36. Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE-based fast local level set method. J. Comput. Phys. 155(2), 410–438 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Russo, G., Smereka, P.: A remark on computing distance functions. J. Comput. Phys. 163(1), 51–67 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sethian, J.: Numerical methods for propagating fronts. In: Concus, P., Finn, R. (eds.) Variational Methods for Free Surface Interfaces, pp. 155–164. Springer, New York (1987)

    Chapter  Google Scholar 

  39. Sethian, J.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. 93, 1591–1595 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sethian, J.: Fast marching methods. SIAM Rev. 41(2), 199–235 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sethian, J.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  42. Sethian, J.A., Strain, J.: Crystal growth and dendritic solidification. J. Comput. Phys. 98(2), 231–253 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton-Jacobi equations. Proc. Natl. Acad. Sci. USA 98(20), 11069–11074 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton-Jacobi equations: theory and algorithms. SIAM J. Numer. Anal. 41(1), 325–363 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Souganidis, P.E.: Approximation schemes for viscosity solutions of Hamilton-Jacobi equations. J. Differ. Equ. 59(1), 1–43 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  46. Souganidis, P.E.: Existence of viscosity solutions of Hamilton-Jacobi equations. J. Differ. Equ. 56(3), 345–390 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  47. Subbotin, A.: Generalized Solutions of First Order PDEs: The Dynamical Optimization Perspective. Systems & Control. Birkhäuser, Boston (1994)

    MATH  Google Scholar 

  48. Sussman, M., Fatemi, E.: An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow. SIAM J. Sci. Comput. 20(4), 1165–1191 (1999). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994)

    Article  MATH  Google Scholar 

  50. Takei, R., Tsai, R.: Optimal trajectories of curvature constrained motion in hamilton-jacobi formulation (to appear). J. Sci. Comput. 54(2), 622–644 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. The MathWorks Inc., N.M.U.S.: MatLab and Statistics Toolbox Release 2010b, Version 7.11.0.584. The Mathworks, Inc., Natick, Massachusetts, United States. (2010)

  52. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Automat. Control 40(9), 1528–1538 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  53. Vladimirsky, A.: Static PDEs for time-dependent control problems. Interfaces Free Bound 8(3), 281–300 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhao, H.: A fast sweeping method for Eikonal equations. Math. Comput. 74(250), 603–627 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhao, H.K., Osher, S., Fedkiw, R.: Fast surface reconstruction using the level set method. In: Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision, 2001. pp. 194–201 (2001)

  56. Zhu, J., Ronney, P.: Simulation of front propagation at large non-dimensional flow disturbance intensities. Combust. Sci. Technol. 100(1–6), 183–201 (1994)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. A.Oberman for helpful discussions. The second author would like to thank the organizers of the 2011 BIRS workshop “Advancing numerical methods for viscosity solutions and applications”, Profs. Falcone, Ferretti, Mitchell, and Zhao for stimulating discussions which eventually lead to this work

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Tcheng.

Additional information

The first author acknowledges the support of the Schulich Graduate Fellowship. This research was partly supported through the NSERC Discovery and Discovery Accelerator Supplement grants of the second author.

Appendices

Appendix 1: Direct Method to Compute \(\psi _{\mathrm {II}}\) in the t-FMM, in 2D

We provide a direct method for solving the minimization problem appearing in Equation (17), in two dimensions. Introducing \(\tau (y)=h/|F(\mathbf {x}_{ij},\psi (y))|\), we first use linear interpolation to simplify the quantity we wish to minimize:

$$\begin{aligned} \psi (\tilde{\mathbf {x}}) + \sqrt{\xi ^{2}+(1-\xi )^{2}}~ \frac{~h}{|F(\mathbf {x}_{ij},\psi (\tilde{\mathbf {x}}))|}= & {} \psi (\tilde{\mathbf {x}}) + \sqrt{\xi ^{2}+(1-\xi )^{2}}~ \tau (\tilde{\mathbf {x}}) \nonumber \\\approx & {} \xi \psi (\mathbf {x}_{i-1,j})+(1-\xi ) \psi (\mathbf {x}_{i,j+1})\nonumber \\&+ \sqrt{\xi ^{2}+(1-\xi )^{2}}\nonumber \\&\times \, \left( \xi \tau (\mathbf {x}_{i-1,j})+(1-\xi ) \tau (\mathbf {x}_{i,j+1}) \right) \nonumber \\=: & {} f(\xi ) \end{aligned}$$
(37)

Minimizing f over \(\xi \in (0,1)\) amounts to finding the roots of \(0 = c_{4}\lambda ^{4} + c_{3}\lambda ^{3} + c_{2}\lambda ^{2} + c_{1}\lambda + c_{0}\) where \(\lambda \in (0,1)\) is such that \(f'(\lambda )=0\). This quartic can be solved either directly with closed formulas, or with Newton’s method—we use the latter. For each root \(r_{i} \in (0,1)\) the corresponding value of \(\psi \) is computed as \(\psi _{\mathrm {II},r_{i}}=f(r_{i})\). If \(\psi _{\mathrm {II},r_{i}}< \psi (\mathbf {x}_{i-1,j})\) or \(\psi _{\mathrm {II},r_{i}}<\psi (\mathbf {x}_{i,j+1})\), then \(\psi _{\mathrm {II},r_{i}}\) is discarded. Values arising from minimization in one dimension are also computed as \(\psi _{\mathrm {II},0} = \psi (\mathbf {x}_{i,j+1}) + \tau (\mathbf {x}_{i,j+1})\) and \(\psi _{\mathrm {II},1} = \psi (\mathbf {x}_{i-1,j}) + \tau (\mathbf {x}_{i-1,j})\). The global minimum is found by comparing all those values.

Appendix 2: Implementation Details for the Examples

We give some details about the examples presented in Sect. 7. All tests were performed using Matlab \(^\circledR \) [51]. In particular, finding the minimum value in \(\mathcal {N}\)  is done using min.

Computing the outward normal In regions where the level-set function \(\phi \) is \(C^{1}\), we have \(\hat{\nu }= (\phi _{x},\phi _{y},\phi _{t})/|(\phi _{x},\phi _{y},\phi _{t})|\). We use the Implicit Function Theorem: e.g., If \(\psi (y,t)=x\) satisfies \(\phi (\psi (y,t),y,t)=0\), then \(\phi _{y} = -\phi _{x}\psi _{y}\) and \(\phi _{t} = -\phi _{x}\psi _{t}\). Since \(\phi _{x} \ne 0\), we set \(\mathbf {\nu }= (+\mathrm {sign}(\phi _{x}),\psi _{y},\psi _{t})\) and \(\hat{\nu }= \mathbf {\nu }/|\mathbf {\nu }|\). In the (t-)FMM as well as in the sideways representations, the points used to approximate the derivatives using finite-differences are the ones involved in the computation of the new point. E.g., In the t-FMM, if two-dimensional optimization was used in Quadrant III to obtain \(\psi _{ij}\), then \(\hat{\nu }(p_{ij}) = \mathbf {\nu }/|\mathbf {\nu }|\) where

$$\begin{aligned} \mathbf {\nu } = \left( \, \left( \psi _{ij}-\psi _{i-1,j} \right) / h \,,\, \left( \psi _{ij}-\psi _{i,j-1} \right) /h \,,\, -\mathrm {sign}(\hat{\nu }_{3}(p_{ij-1})) \, \right) \end{aligned}$$
(38)

Choice of parameters In all examples, the number of points in each dimension is \(N+1\), and the spatial grid spacings are even: \(h=dx=dy\). The size of the local grid in Algorithm 3 is \(s= \lfloor \frac{N}{3} \rfloor \). When F depends on time, we use adaptive time-stepping. Before the time where \(F=0\), we set \(\varDelta t = r_{1} h\). Passed that time, we let \(\varDelta t = r_{2} h\). To assess the convergence of the sideways methods, a yt-grid with spacings h and \(\varDelta t = h/2\) is built. The exact normal \(\hat{\nu }\) is assigned to the points as they are accepted in all the examples, except Example 1 where it is computed as explained in the above paragraph.

Example 1

The exact solution to the Level-Set Equation is \(\phi (x,y,t) = \sqrt{x^{2}+y^{2}} -R(t)\) where \(R(t) = \left( r_{0} - \frac{e^{10t}-1}{10e}+t \right) \). Domain: \([-.321,.319]^{2}\). \(T_{F}=0.3\). xt- and yt-rep.: \(r_{1} = 1/3\), \(r_{2} = 2\). Skewed rep.: \(r_{1} = r_{2} = 1\). Domain for convergence of Algorithm 4: \((y,t) \in [-0.25,0.25]\times [0,0.3]\).

Example 2

The signed distance function to \(\mathcal {C}_{t}\) is given as \(\phi (x,y,t)=\sqrt{(x-x_{c}(t))^{2}+y^{2}}-r(t)\) where \(x_{c}(t) = r_{0}\sinh t\) and \(r(t) = r_{0}\cosh t\). Note that \(\phi \) does not solve the Level-Set Equation. Domain: \([-1.01,0.99]^2\). \(T_{F}=1\). xt- and yt-rep.: \(r_{1} = 1/3\), \(r_{2} = 2\). Skewed rep.: \(r_{1} = 1/3\), \(r_{2} = 5\). Domain for convergence of Algorithm 4: \((y,t) \in [-0.25,0.25]\times [0,1]\) and \((x,t) \in [-0.25,0.25]\times [0,1]\).

Example 3

The exact solution to the Level-Set Equation is \(\phi (x,y,t) = \sqrt{(x-g t)^2+y^2}-\left( r_{0}+c t \right) \) where \(b=10\), \(c=1/2\) and \(g(t) = \arctan \left( b(t-0.5)\right) + \frac{\pi }{2}\). The speed is

$$\begin{aligned} F = \frac{(x-gt)(g't+g)}{\sqrt{(x-gt)^{2}+y^{2}}} + c ~\Longrightarrow ~F \approx \left\{ \begin{array}{ll} c &{} \mathrm {for~} t \mathrm {~small} \\ \frac{(x-\pi t)\pi }{\sqrt{(x-\pi t)^{2}+y^{2}}} + c &{} \mathrm {for~} t \mathrm {~large} \\ \end{array} \right. \end{aligned}$$
(39)

We expect the circle to first expand (when t is small), and then expand while moving to the right with speed \(\pi \) (when t is large). Domain: \([-1.51,+1.49]^{2}\). \(T_{F}=0.5\). xt- and yt-rep.: \(r_{1} = 1/3\), \(r_{2} = 2\). Skewed rep.: \(r_{1} = 1/3\), \(r_{2} = 5\). Domain for convergence of Algorithm 4: \((y,t) \in [-0.25,0.25]\times [0,0.5]\).

Example 4

The set \(\mathcal {C}_{0}\) consists of two disjoint circles of radius \(r_{0}=0.25\), with centres at \((-0.3,0)\) and (0.3, 0). The speed is \(F = 1-e^{2t-1}\). The circles touch along the y-axis when \(t\approx 0.08\). When \(t<0.5\) the exact solution to the Level-Set Equation is \(\phi (x,y,t) = \min \left\{ \sqrt{(x+0.3)^{2}+y^{2}} \right. \) \(\left. - R(t), \sqrt{(x-0.3)^{2}+y^{2}} - R(t) \right\} \) where \(R(t)= r_{0} - \frac{e^{2t}-1}{2e}+t \). Domain: \([-1.5+ 0.01e,+1.5+ 0.01e]^{2}\). \(T_{F}=1.2\). xt- and yt-rep.: \(r_{1} = 1/3\), \(r_{2} = 2\). Skewed rep.: \(r_{1} = 1/3\), \(r_{2} = 5\). Domain for convergence of Algorithm 4: \((y,t) \in [-0.5,0.5]\times [0.2,0.5]\) and \((y,t) \in [-0.5,0.5]\times [0.5,.52]\).

The Almond example The exact solution to the Level-Set Equation is

$$\begin{aligned} \phi (x,y,t)= & {} \left( \sqrt{x^{2}+y^{2}}-r_{0}+\frac{e^{ct}-1}{ce}-t(1+C) \right) + \frac{t|xt-y|}{\sqrt{1+t^{2}}} \end{aligned}$$
(40)

The constants are set to be: \(r_0 = 1/4\), \(c = 1\), and \(C = .65\). The function \(\phi \) is made up of two parts: The first one in brackets is qualitatively the same as in Example 1. Domain: \([-0.5,0.5]^2\). \(T_{F}=1.9\). xt- and yt-rep.: \(r_{1} = 1/3\), \(r_{2} =2\). Skewed rep.: \(r_{1} = 1/2\), \(r_{2} = 6\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tcheng, A., Nave, JC. A Low Complexity Algorithm for Non-Monotonically Evolving Fronts. J Sci Comput 69, 1165–1191 (2016). https://doi.org/10.1007/s10915-016-0231-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0231-8

Keywords

Navigation